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‭In Grade 7, instructional time should focus on four critical areas:‬

‭1.‬ ‭Developing understanding of and applying proportional relationships;‬
‭2.‬ ‭Developing understanding of operations with rational numbers and working with expressions and linear equations;‬
‭3.‬ ‭Solving‬ ‭problems‬ ‭involving‬ ‭scale‬ ‭drawings‬ ‭and‬ ‭informal‬ ‭geometric‬ ‭constructions,‬ ‭and‬ ‭working‬ ‭with‬ ‭two-‬ ‭and‬

‭three-dimensional shapes to solve problems involving area, surface area, and volume; and‬
‭4.‬ ‭Drawing inferences about populations based on samples.‬

‭1.‬ ‭Students‬ ‭extend‬ ‭their‬ ‭understanding‬ ‭of‬ ‭ratios‬ ‭and‬ ‭develop‬ ‭understanding‬ ‭of‬ ‭proportionality‬ ‭to‬ ‭solve‬ ‭single-‬ ‭and‬ ‭multi-step‬
‭problems.‬‭Students‬‭use‬‭their‬‭understanding‬‭of‬‭rations‬‭and‬‭proportionality‬‭to‬‭solve‬‭a‬‭wide‬‭variety‬‭of‬‭percent‬‭problems,‬‭including‬
‭those‬‭involving‬‭discounts,‬‭interest,‬‭taxes,‬‭tips,‬‭and‬‭percent‬‭increase‬‭or‬‭decrease.‬‭Students‬‭solve‬‭problems‬‭about‬‭scale‬‭drawing‬‭by‬
‭relating‬‭corresponding‬‭lengths‬‭between‬‭the‬‭objects‬‭or‬‭by‬‭using‬‭the‬‭fact‬‭that‬‭relationships‬‭of‬‭lengths‬‭within‬‭an‬‭object‬‭are‬‭preserved‬
‭in‬‭similar‬‭objects.‬‭Students‬‭graph‬‭proportional‬‭relationships‬‭and‬‭understand‬‭the‬‭unit‬‭rate‬‭informally‬‭as‬‭a‬‭measure‬‭of‬‭the‬‭steepness‬
‭of the related line, called the slope. They distinguish proportional relationships from other relationships.‬

‭2.‬ ‭Students‬ ‭develop‬ ‭a‬ ‭unified‬ ‭understanding‬‭of‬‭numbers,‬‭recognizing‬‭fractions,‬‭decimals‬‭(that‬‭have‬‭a‬‭finite‬‭or‬‭a‬‭repeating‬‭decimal‬
‭representation),‬ ‭and‬ ‭percents‬ ‭as‬ ‭different‬ ‭representations‬ ‭of‬ ‭rational‬ ‭numbers.‬ ‭Students‬ ‭extend‬ ‭addition,‬ ‭subtraction,‬
‭multiplication,‬ ‭and‬ ‭division‬ ‭to‬ ‭all‬ ‭rational‬ ‭numbers,‬ ‭maintaining‬ ‭the‬ ‭properties‬ ‭of‬ ‭operations‬ ‭and‬ ‭the‬ ‭relationships‬ ‭between‬
‭addition‬‭and‬‭subtraction,‬‭and‬‭multiplication‬‭and‬‭division.‬‭By‬‭applying‬‭these‬‭properties,‬‭and‬‭by‬‭viewing‬‭negative‬‭numbers‬‭in‬‭terms‬
‭of‬ ‭everyday‬ ‭contexts‬ ‭(e.g.,‬ ‭amounts‬ ‭owed‬ ‭or‬ ‭temperatures‬ ‭below‬ ‭zero),‬ ‭students‬ ‭explain‬ ‭and‬ ‭interpret‬ ‭the‬ ‭rules‬ ‭for‬ ‭adding,‬
‭subtracting,‬ ‭multiplying,‬ ‭and‬ ‭dividing‬ ‭with‬ ‭negative‬ ‭numbers.‬ ‭They‬ ‭use‬ ‭the‬ ‭arithmetic‬ ‭of‬ ‭rational‬ ‭numbers‬ ‭as‬ ‭they‬ ‭formulate‬
‭expressions and equations in one variable and use these equations to solve problems.‬

‭3.‬ ‭Students‬ ‭continue‬ ‭their‬ ‭work‬ ‭with‬ ‭area‬ ‭from‬ ‭Grade‬ ‭6,‬ ‭solving‬ ‭problems‬ ‭involving‬ ‭the‬ ‭area‬ ‭and‬ ‭circumference‬ ‭of‬ ‭a‬ ‭circle‬ ‭and‬
‭surface‬ ‭area‬ ‭of‬ ‭three-dimensional‬ ‭objects.‬ ‭In‬ ‭preparation‬ ‭for‬ ‭work‬ ‭on‬ ‭congruence‬ ‭and‬ ‭similarity‬ ‭in‬ ‭Grade‬ ‭8‬ ‭they‬‭reason‬‭about‬
‭relationships‬ ‭among‬ ‭two-dimensional‬ ‭figures‬ ‭using‬ ‭scale‬ ‭drawings‬ ‭and‬ ‭informal‬ ‭geometric‬ ‭constructions,‬ ‭and‬ ‭they‬ ‭gain‬
‭familiarity‬ ‭with‬ ‭the‬ ‭relationships‬ ‭between‬ ‭angles‬ ‭formed‬ ‭by‬ ‭intersecting‬ ‭lines.‬ ‭Students‬ ‭work‬ ‭with‬ ‭three-dimensional‬ ‭figures,‬
‭relating‬ ‭them‬ ‭to‬ ‭two-dimensional‬ ‭figures‬ ‭by‬ ‭examining‬ ‭cross-sections.‬ ‭They‬ ‭solve‬ ‭real-world‬ ‭and‬ ‭mathematical‬ ‭problems‬
‭involving‬ ‭area,‬‭surface‬‭area,‬‭and‬‭volume‬‭of‬‭two-‬‭and‬‭three-dimensional‬‭objects‬‭composed‬‭of‬‭triangles,‬‭quadrilaterals,‬‭polygons,‬
‭cubes and right prisms.‬
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‭4.‬ ‭Students‬‭build‬‭on‬‭their‬‭previous‬‭work‬‭with‬‭single‬‭data‬‭distributions‬‭to‬‭compare‬‭two‬‭data‬‭distributions‬‭and‬‭address‬‭questions‬‭about‬
‭differences‬ ‭between‬ ‭populations.‬ ‭They‬ ‭begin‬ ‭informal‬ ‭work‬ ‭with‬ ‭random‬ ‭sampling‬ ‭to‬ ‭generate‬ ‭data‬ ‭sets‬ ‭and‬ ‭learn‬ ‭about‬ ‭the‬
‭importance of representative samples for drawing inferences.‬

‭Ratios and Proportional Relationships‬

‭Analyze proportional relationships and use them to solve real-world and mathematical problems.‬

‭1.‬ ‭Compute‬‭unit‬‭rates‬‭associated‬‭with‬‭ratios‬‭of‬‭fractions,‬‭including‬‭ratios‬‭of‬‭lengths,‬‭areas‬‭and‬‭other‬‭qualities‬‭measured‬‭in‬‭like‬‭or‬
‭different‬ ‭units.‬ ‭For‬ ‭example,‬‭if‬‭a‬‭person‬‭walks‬‭h‬‭mile‬‭in‬‭each‬ ‭1‬‭/4‬‭hour,‬‭compute‬‭the‬‭unit‬‭rate‬‭as‬‭the‬‭complex‬‭fraction‬‭h‬‭/‬ ‭1‬‭/4‬
‭miles per hour, equivalently 2 miles per hour.‬

‭2.‬ ‭Recognize‬ ‭and‬ ‭represent‬ ‭proportional‬ ‭relationships‬ ‭between‬ ‭quantities‬ ‭including‬ ‭those‬ ‭represented‬ ‭in‬ ‭Montana‬ ‭American‬
‭Indian cultural contexts.‬

‭a.‬ ‭Decide‬ ‭whether‬ ‭two‬ ‭quantities‬ ‭are‬ ‭in‬ ‭a‬ ‭proportional‬ ‭relationship,‬ ‭e.g.,‬ ‭by‬ ‭testing‬ ‭for‬ ‭equivalent‬ ‭ratios‬ ‭in‬ ‭a‬ ‭table‬ ‭or‬
‭graphing on a coordinate plane and observing whether the graph is a straight line through the origin.‬

‭b.‬ ‭Identify‬ ‭the‬ ‭constant‬ ‭of‬ ‭proportionality‬ ‭(unit‬ ‭rate)‬ ‭in‬ ‭tables,‬ ‭graphs,‬ ‭equations,‬ ‭diagrams,‬‭and‬‭verbal‬‭descriptions‬‭of‬
‭proportional relationships.‬

‭C.‬‭Represent‬‭proportional‬‭relationships‬‭by‬‭equations.‬‭For‬‭example,‬‭if‬‭total‬‭cost‬‭"t"‬‭is‬‭proportional‬‭to‬‭the‬‭number‬‭"n"‬
‭of‬ ‭items‬ ‭purchased‬ ‭at‬ ‭a‬ ‭constant‬‭price‬‭"p",‬‭the‬‭relationship‬‭between‬‭the‬‭total‬‭cost‬‭and‬‭the‬‭number‬‭of‬‭items‬‭can‬‭be‬
‭expressed‬ ‭as‬ ‭t‬ ‭pn.‬ ‭A‬ ‭contemporary‬ ‭American‬ ‭Indian‬ ‭example,‬ ‭analyze‬ ‭cost‬‭of‬‭beading‬‭materials;‬‭cost‬‭of‬‭cooking‬
‭ingredients for family gathering, community celebrations, etc.‬

‭d.‬‭Explain‬‭what‬‭a‬‭point‬‭(x,‬‭y)‬‭on‬‭the‬‭graph‬‭of‬‭a‬‭proportional‬‭relationship‬‭means‬‭in‬‭terms‬‭of‬‭the‬‭situation,‬‭with‬‭special‬
‭attention to the points (0, 0) and (1, r) where r is the unit rate.‬

‭3.‬ ‭Use proportional relationships to solve multistep ratio and percent problems within cultural contexts, including those of‬
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‭Montana‬‭American‬‭Indians‬‭(e.g.,‬‭percent‬‭of‬‭increase‬‭and‬‭decrease‬‭of‬‭tribal‬‭land).‬‭Examples:‬‭simple‬‭interest,‬‭tax,‬‭markups‬‭and‬
‭markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.‬

‭The Number System‬

‭Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational‬
‭numbers.‬

‭1.‬ ‭Apply‬ ‭and‬ ‭extend‬ ‭previous‬ ‭understandings‬ ‭of‬ ‭addition‬ ‭and‬ ‭subtraction‬ ‭to‬ ‭add‬ ‭and‬ ‭subtract‬ ‭rational‬ ‭numbers;‬ ‭represent‬
‭addition and subtraction on a horizontal or vertical number line diagram.‬

‭a.‬ ‭Describe‬ ‭situations‬ ‭in‬ ‭which‬ ‭opposite‬ ‭quantities‬ ‭combine‬ ‭to‬ ‭make‬ ‭0.‬ ‭For‬ ‭example,‬ ‭a‬ ‭hydrogen‬ ‭atom‬ ‭has‬ ‭0‬ ‭charge‬
‭because its two constituents are oppositely charged.‬

‭b.‬ ‭Understand‬ ‭p‬ ‭+‬ ‭q‬ ‭as‬ ‭the‬ ‭number‬ ‭located‬ ‭a‬ ‭distance‬ ‭\q\‬ ‭from‬ ‭p,‬ ‭in‬ ‭the‬ ‭positive‬ ‭or‬ ‭negative‬ ‭direction‬ ‭depending‬ ‭on‬
‭whether‬ ‭q‬ ‭is‬ ‭positive‬ ‭or‬ ‭negative.‬ ‭Show‬ ‭that‬ ‭a‬ ‭number‬ ‭and‬ ‭its‬ ‭opposite‬ ‭have‬ ‭a‬ ‭sum‬ ‭of‬ ‭0‬ ‭(are‬ ‭additive‬ ‭inverses).‬
‭Interpret sums of rational numbers by describing real-world contexts.‬

‭c.‬ ‭Understand‬ ‭subtraction‬‭of‬‭rational‬‭numbers‬‭as‬‭adding‬‭the‬‭additive‬‭inverse,‬‭p‬‭—‬‭q‬‭=‬‭p‬‭+‬‭(-q).‬‭Show‬‭that‬‭the‬‭distance‬
‭between‬‭two‬‭rational‬‭numbers‬‭on‬‭the‬‭number‬‭line‬‭is‬‭the‬‭absolute‬‭value‬‭of‬‭their‬‭difference,‬‭and‬‭apply‬‭this‬‭principle‬‭in‬
‭real-world contexts.‬

‭d.‬ ‭Apply properties of operations as strategies to add and subtract rational numbers.‬

‭2.‬ ‭Apply‬ ‭and‬ ‭extend‬ ‭previous‬ ‭understandings‬ ‭of‬ ‭multiplication‬ ‭and‬ ‭division‬ ‭and‬ ‭of‬ ‭fractions‬ ‭to‬ ‭multiply‬ ‭and‬ ‭divide‬ ‭rational‬
‭numbers.‬

‭a.‬ ‭Understand‬‭that‬‭multiplication‬‭is‬‭extended‬‭from‬‭fractions‬‭to‬‭rational‬‭numbers‬‭by‬‭requiring‬‭that‬‭operations‬‭continue‬‭to‬
‭satisfy‬‭the‬‭properties‬‭of‬‭operations,‬‭particularly‬‭the‬‭distributive‬‭property,‬‭leading‬‭to‬‭products‬‭such‬‭as‬‭(-1)(-1)‬‭=‬‭1‬‭and‬
‭the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.‬
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‭b.‬ ‭Understand‬ ‭that‬ ‭integers‬ ‭can‬ ‭be‬ ‭divided,‬ ‭provided‬ ‭that‬ ‭the‬ ‭divisor‬ ‭is‬ ‭not‬ ‭zero,‬ ‭and‬ ‭every‬ ‭quotient‬ ‭of‬‭integers‬‭(with‬
‭nonzero‬ ‭divisor)‬ ‭is‬ ‭a‬ ‭rational‬ ‭number.‬ ‭If‬ ‭p‬ ‭and‬ ‭q‬ ‭are‬ ‭integers,‬ ‭then‬ ‭—(p/q)‬ ‭=‬ ‭(-p)/q‬ ‭=‬ ‭p\(-q).‬ ‭Interpret‬ ‭quotients‬‭of‬
‭rational numbers by describing real-world contexts.‬

‭c.‬ ‭Apply properties of operations as strategies to multiply and divide rational numbers.‬

‭d.‬ ‭Convert‬ ‭a‬ ‭rational‬ ‭number‬ ‭to‬ ‭a‬ ‭decimal‬ ‭using‬ ‭long‬ ‭division;‬ ‭know‬ ‭that‬ ‭the‬ ‭decimal‬ ‭form‬ ‭of‬ ‭a‬ ‭rational‬ ‭number‬
‭terminates in Os or eventually repeats.‬

‭3.‬ ‭Solve‬ ‭real-world‬ ‭and‬ ‭mathematical‬ ‭problems‬ ‭from‬ ‭a‬ ‭variety‬ ‭of‬ ‭cultural‬ ‭contexts,‬ ‭including‬ ‭those‬ ‭of‬ ‭Montana‬ ‭American‬
‭Indians, involving the four operations with rational numbers.‬

‭Expressions and Equations‬

‭Use properties of operations to generate equivalent expressions.‬

‭1.‬ ‭Apply‬ ‭properties‬ ‭of‬ ‭operations‬ ‭as‬ ‭strategies‬ ‭to‬ ‭add,‬ ‭subtract,‬ ‭factor,‬ ‭and‬ ‭expand‬ ‭linear‬ ‭expressions‬ ‭with‬ ‭rational‬
‭coefficients.‬

‭2.‬ ‭Understand‬‭that‬‭rewriting‬‭an‬‭expression‬‭in‬‭different‬‭forms‬‭in‬‭a‬‭problem‬‭context‬‭can‬‭shed‬‭light‬‭on‬‭the‬‭problem‬‭and‬‭how‬‭the‬

‭quantities‬‭in‬‭it‬‭are‬‭related.‬‭For‬‭example,‬‭a‬‭+‬‭0.05a‬‭=‬‭1.05a‬‭means‬‭that‬‭"increase‬‭by‬‭5%"‬‭is‬‭the‬‭same‬‭as‬‭"multiply‬‭by‬‭1.05."‬
‭Solve real-life and mathematical problems using numerical and algebraic expressions and equations.‬

‭3.‬ ‭Solve‬ ‭multi-step‬ ‭real-life‬ ‭and‬ ‭mathematical‬ ‭problems‬ ‭posed‬ ‭with‬ ‭positive‬ ‭and‬ ‭negative‬ ‭rational‬ ‭numbers‬ ‭in‬ ‭any‬ ‭form‬
‭(whole‬ ‭numbers,‬ ‭fractions,‬ ‭and‬ ‭decimals),‬ ‭using‬ ‭tools‬ ‭strategically.‬ ‭Apply‬ ‭properties‬ ‭of‬ ‭operations‬ ‭to‬ ‭calculate‬ ‭with‬
‭numbers‬ ‭in‬ ‭any‬ ‭form;‬ ‭convert‬ ‭between‬ ‭forms‬ ‭as‬ ‭appropriate;‬ ‭and‬ ‭assess‬ ‭the‬ ‭reasonableness‬ ‭of‬ ‭answers‬ ‭using‬ ‭mental‬
‭computation and estimation strategies.‬
‭For‬‭example:‬‭If‬‭a‬‭woman‬‭making‬‭$25‬‭an‬‭hour‬‭gets‬‭a‬‭10%‬‭raise,‬‭she‬‭will‬‭make‬‭an‬‭additional‬‭1/10‬‭of‬‭her‬‭salary‬‭an‬‭hour,‬‭or‬
‭$2.50,‬ ‭for‬ ‭a‬ ‭new‬‭salary‬‭of‬‭$27.50.‬‭If‬‭you‬‭want‬‭to‬‭place‬‭a‬‭towel‬‭bar‬‭9‬ ‭3‬‭/4‬‭inches‬‭long‬‭in‬‭the‬‭center‬‭of‬‭a‬‭door‬‭that‬‭is‬‭27‬ ‭1‬‭/2‬
‭inches‬‭wide,‬‭you‬‭will‬‭need‬‭to‬‭place‬‭the‬‭bar‬‭about‬‭9‬‭inches‬‭form‬‭each‬‭edge;‬‭this‬‭estimate‬‭can‬‭be‬‭used‬‭as‬‭a‬‭check‬‭on‬‭the‬‭exact‬
‭computation.‬
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‭4.‬ ‭Use‬ ‭variables‬ ‭to‬ ‭represent‬ ‭quantities‬ ‭in‬ ‭a‬ ‭real-world‬ ‭or‬ ‭mathematical‬ ‭problem,‬ ‭including‬ ‭those‬ ‭represented‬ ‭in‬ ‭Montana‬
‭American‬ ‭Indian‬ ‭cultural‬ ‭contexts,‬‭and‬‭construct‬‭simple‬‭equations‬‭and‬‭inequalities‬‭to‬‭solve‬‭problems‬‭by‬‭reasoning‬‭about‬
‭the quantities.‬

‭a.‬ ‭Solve‬ ‭word‬ ‭problems‬ ‭leading‬ ‭to‬ ‭equations‬ ‭of‬ ‭the‬ ‭form‬ ‭PX‬ ‭+‬ ‭q‬ ‭=‬ ‭r‬ ‭and‬ ‭p(x‬ ‭+‬ ‭q)‬ ‭=‬ ‭r,‬‭where‬‭p,‬‭q,‬‭and‬‭r‬‭are‬‭specific‬
‭rational‬ ‭numbers.‬ ‭Solve‬ ‭equations‬ ‭of‬ ‭these‬ ‭forms‬ ‭fluently.‬ ‭Compare‬ ‭an‬ ‭algebraic‬ ‭solution‬‭to‬‭an‬‭arithmetic‬‭solution,‬
‭identifying‬‭the‬‭sequence‬‭ofthe‬‭operations‬‭used‬‭in‬‭each‬‭approach.‬‭For‬‭example,‬‭the‬‭perimeter‬‭of‬‭a‬‭rectangle‬‭is‬‭54‬‭cm.‬
‭Its length is 6 cm. What is its width?‬

‭b.‬ ‭Solve‬ ‭word‬ ‭problems‬ ‭leading‬ ‭to‬ ‭inequalities‬ ‭of‬ ‭the‬ ‭form‬ ‭PX‬ ‭+‬ ‭q‬ ‭>‬ ‭r‬ ‭or‬ ‭PX‬ ‭+‬ ‭q‬ ‭<‬ ‭r,‬ ‭where‬ ‭p,‬ ‭q,‬‭and‬‭r‬‭are‬‭specific‬
‭rational‬‭numbers.‬‭Graph‬‭the‬‭solution‬‭set‬‭of‬‭the‬‭inequality‬‭and‬‭interpret‬‭it‬‭in‬‭the‬‭context‬‭of‬‭the‬‭problem.‬‭For‬‭example:‬
‭As‬‭a‬‭salesperson,‬‭you‬‭are‬‭paid‬‭$50‬‭per‬‭week‬‭plus‬‭$3‬‭per‬‭sale.‬‭This‬‭week‬‭you‬‭want‬‭you‬‭pay‬‭to‬‭be‬‭a‬‭least‬‭$100.‬‭Write‬‭an‬
‭inequality for the number of sales you need to make, and describe the solutions.‬

‭Geometry‬

‭Draw construct, and describe geometrical figures and describe the relationships between them.‬

‭1.‬ ‭Solve‬ ‭problems‬ ‭involving‬ ‭scale‬ ‭drawings‬ ‭of‬ ‭geometric‬ ‭figures,‬ ‭including‬ ‭computing‬ ‭actual‬ ‭lengths‬ ‭and‬ ‭areas‬ ‭from‬ ‭a‬‭scale‬
‭drawing and reproducing a scale drawing at a different scale.‬

‭2.‬ ‭Draw‬ ‭(freehand,‬ ‭with‬ ‭ruler‬ ‭and‬ ‭protractor,‬ ‭and‬ ‭with‬ ‭technology)‬ ‭geometric‬ ‭shapes‬ ‭with‬ ‭given‬ ‭conditions.‬ ‭Focus‬ ‭on‬
‭constructing‬‭triangles‬‭from‬‭three‬‭measures‬‭of‬‭angles‬‭or‬‭sides,‬‭noticing‬‭when‬‭the‬‭conditions‬‭determine‬‭a‬‭unique‬‭triangle,‬‭more‬
‭than one triangle, or no triangle.‬

‭3.‬ ‭Describe‬ ‭the‬ ‭two-dimensional‬ ‭figures‬ ‭that‬ ‭result‬ ‭from‬ ‭slicing‬ ‭three-dimensional‬ ‭figures,‬ ‭as‬ ‭in‬ ‭plane‬ ‭sections‬ ‭of‬ ‭right‬
‭rectangular prisms and right rectangular pyramids.‬

‭Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.‬

‭4.‬ ‭Know‬ ‭the‬ ‭formulas‬ ‭for‬ ‭the‬ ‭area‬ ‭and‬ ‭circumference‬ ‭of‬ ‭a‬ ‭circle‬ ‭and‬ ‭use‬ ‭them‬ ‭to‬ ‭solve‬ ‭problems‬ ‭from‬ ‭a‬ ‭variety‬ ‭of‬ ‭cultural‬
‭contexts,‬ ‭including‬ ‭those‬ ‭of‬ ‭Montana‬ ‭American‬ ‭Indians;‬ ‭give‬ ‭an‬ ‭informal‬ ‭derivation‬ ‭of‬ ‭the‬ ‭relationship‬ ‭between‬ ‭the‬
‭circumference and area of a circle.‬
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‭5.‬ ‭Use‬ ‭facts‬ ‭about‬ ‭supplementary,‬ ‭complementary,‬ ‭vertical,‬ ‭and‬ ‭adjacent‬ ‭angles‬ ‭in‬ ‭a‬ ‭multi-step‬ ‭problem‬ ‭to‬ ‭write‬ ‭and‬ ‭solve‬
‭simple equations for an unknown angle in a figure.‬

‭6.‬ ‭Solve‬ ‭real-world‬ ‭and‬ ‭mathematical‬ ‭problems‬ ‭from‬ ‭a‬ ‭variety‬ ‭of‬ ‭cultural‬ ‭contexts,‬ ‭including‬ ‭those‬ ‭of‬ ‭Montana‬ ‭American‬
‭Indians,‬‭involving‬‭area,‬‭volume‬‭and‬‭surface‬‭area‬‭of‬‭two-‬‭and‬‭three-dimensional‬‭objects‬‭composed‬‭of‬‭triangles,‬‭quadrilaterals,‬
‭polygons, cubes, and right prisms.‬

‭Statistics and Probability‬

‭Use random sampling to draw inferences about a population.‬

‭1.‬ ‭Understand that statistics can be used to gain information about a population by examining a sample of the population;‬
‭generalizations about a population from a sample are valid only if the sample is representative of that population. Understand‬
‭that random sampling tends to produce representative samples and support valid inferences.‬

‭2.‬ ‭Use data, including Montana American Indian demographic data, from a random sample to draw inferences about a‬
‭population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to‬
‭gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling‬
‭words from the book; predict the winner of a school election based on randomly samples survey data, predict how many text‬
‭messages your classmates receive in a day. Gauge how far off the estimate or prediction might be.‬

‭Draw informal comparative inferences about two populations.‬

‭3.‬ ‭Informally assess the degree of visual overlap of two numerical data distributions with similar variability's, measuring the‬
‭difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of‬
‭players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability‬
‭(mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.‬

‭4.‬ ‭Use measures of center and measures of variability for numerical data from random samples to draw informal comparative‬
‭inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are‬
‭generally longer than the words in a chapter of a fourth-grade science book.‬
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‭Investigate chance processes and develop, use, and evaluate probability modes.‬

‭5.‬ ‭Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event‬
‭occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around h‬
‭indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.‬

‭6.‬ ‭Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long‬
‭run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a‬

‭number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times. For‬
‭example, when playing Montana American Indian Hand/Stick games, you can predict the approximate number of accurate‬
‭guesses.‬

‭7.‬ ‭Develop‬ ‭a‬ ‭probability‬ ‭model‬ ‭and‬ ‭use‬ ‭it‬ ‭to‬ ‭find‬ ‭probabilities‬ ‭of‬ ‭events.‬ ‭Compare‬ ‭probabilities‬ ‭from‬ ‭a‬ ‭model‬ ‭to‬ ‭observed‬
‭frequencies; if the agreement is not good, explain possible sources of the discrepancy.‬

‭a.‬ ‭Develop‬‭a‬‭uniform‬‭probability‬‭model‬‭by‬‭assigning‬‭equal‬‭probability‬‭to‬‭all‬‭outcomes,‬‭and‬‭use‬‭the‬‭model‬‭to‬‭determine‬
‭probabilities‬‭of‬‭events.‬‭For‬‭example,‬‭if‬‭a‬‭student‬‭is‬‭selected‬‭at‬‭random‬‭from‬‭a‬‭class,‬‭find‬‭the‬‭probability‬‭that‬‭Jane‬‭will‬
‭be selected and the probability that a girl will be selected.‬

‭b.‬ ‭Develop‬ ‭a‬ ‭probability‬ ‭model‬‭(which‬‭may‬‭not‬‭be‬‭uniform)‬‭by‬‭observing‬‭frequencies‬‭in‬‭data‬‭generated‬‭from‬‭a‬‭chance‬
‭process.‬‭For‬‭example,‬‭find‬‭the‬‭approximate‬‭probability‬‭that‬‭a‬‭spinning‬‭penny‬‭will‬‭land‬‭heads‬‭up‬‭or‬‭that‬‭a‬‭tossed‬‭paper‬
‭cup‬ ‭will‬ ‭land‬ ‭open-end‬ ‭down.‬ ‭Do‬ ‭the‬ ‭outcomes‬ ‭for‬ ‭the‬ ‭spinning‬ ‭penny‬ ‭appear‬ ‭to‬ ‭be‬ ‭equally‬ ‭likely‬ ‭based‬ ‭on‬ ‭the‬
‭observed frequencies?‬

‭8.‬ ‭Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.‬
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‭a.‬ ‭Understand‬ ‭that,‬ ‭just‬ ‭as‬ ‭with‬ ‭simple‬ ‭events,‬ ‭the‬ ‭probability‬ ‭of‬ ‭a‬ ‭compound‬ ‭event‬ ‭is‬‭the‬‭fraction‬‭of‬‭outcomes‬‭in‬‭the‬
‭sample space for which the compound event occurs.‬

‭b.‬ ‭Represent‬‭sample‬‭spaces‬‭for‬‭compound‬‭events‬‭using‬‭methods‬‭such‬‭as‬‭organized‬‭lists,‬‭tables‬‭and‬‭tree‬‭diagrams.‬‭For‬‭an‬
‭event‬‭described‬‭in‬‭everyday‬‭language‬‭(e.g.,‬‭"rolling‬‭double‬‭sixes"),‬‭identify‬‭the‬‭outcomes‬‭in‬‭the‬‭sample‬‭space‬‭which‬
‭compose the event.‬

‭c.‬ ‭Design‬ ‭and‬ ‭use‬ ‭a‬ ‭simulation‬ ‭to‬ ‭generate‬ ‭frequencies‬ ‭for‬ ‭compound‬ ‭events.‬ ‭For‬ ‭example,‬ ‭use‬ ‭random‬ ‭digits‬ ‭as‬ ‭a‬
‭simulation‬‭tool‬‭to‬‭approximate‬‭the‬‭answer‬‭to‬‭the‬‭question:‬‭If‬‭40%‬‭of‬‭donors‬‭have‬‭type‬‭A‬‭blood,‬‭what‬‭is‬‭the‬‭probability‬
‭that it will take at least 4 donors to find one with type A blood?‬
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‭In Grade 8, instructional time should focus on three critical areas:‬

‭1.‬ ‭Formulating‬‭and‬‭reasoning‬‭about‬‭expressions‬‭and‬‭equations,‬‭including‬‭modeling‬‭an‬‭association‬‭in‬‭bivariate‬‭data‬
‭with a linear equation‬‭,‬‭and solving linear equations‬‭and systems of linear equations;‬

‭2.‬ ‭Grasping the concept of a function‬‭and using functions to describe quantitative relationships; and‬
‭3.‬ ‭Analyzing‬ ‭two-‬ ‭and‬ ‭three-dimensional‬ ‭space‬ ‭and‬ ‭figures‬ ‭using‬ ‭distance‬‭,‬ ‭angle‬‭,‬ ‭similarity‬‭,‬ ‭and‬

‭congruence, and understanding and applying the Pythagorean Theorem.‬

‭1.‬ ‭Students‬‭use‬‭linear‬‭equations‬‭and‬‭systems‬‭of‬‭linear‬‭equations‬‭to‬‭represent,‬‭analyze‬‭,‬‭and‬‭solve‬‭a‬‭variety‬‭of‬‭problems‬‭.‬
‭Students‬‭recognize‬‭equations‬‭for‬‭proportions‬‭(y/x‬‭=‬‭m‬‭or‬‭y‬‭=‬‭mx)‬‭as‬‭special‬‭linear‬‭equations‬‭(y‬‭=‬‭mx‬‭+‬‭b)‬‭,‬‭understanding‬
‭that‬‭the‬‭constant‬‭of‬‭proportionality‬‭(m)‬‭is‬‭the‬‭slope‬‭,‬‭and‬‭the‬‭graphs‬‭are‬‭lines‬‭through‬‭the‬‭origin.‬‭They‬‭understand‬‭that‬‭the‬
‭slope‬‭(m)‬‭of‬‭a‬‭line‬‭is‬‭a‬‭constant‬‭rate‬‭of‬‭change,‬‭so‬‭that‬‭if‬‭the‬‭input‬‭or‬‭x-coordinate‬‭changes‬‭by‬‭an‬‭amount‬‭A,‬‭the‬‭output‬‭or‬
‭y-coordinate‬ ‭changes‬ ‭by‬ ‭the‬ ‭amount‬ ‭m*A.‬ ‭Students‬ ‭also‬ ‭use‬ ‭a‬ ‭linear‬ ‭equation‬ ‭to‬‭describe‬‭the‬‭association‬‭between‬‭two‬
‭quantities‬‭in‬‭bivariate‬‭data‬‭(such‬‭as‬‭arm‬‭span‬‭vs.‬‭height‬‭for‬‭students‬‭in‬‭a‬‭classroom).‬‭At‬‭this‬‭grade‬‭,‬‭fitting‬‭the‬‭model‬‭,‬‭and‬
‭assessing‬ ‭its‬ ‭fit‬ ‭to‬ ‭the‬ ‭data‬ ‭are‬ ‭done‬ ‭informally.‬ ‭Interpreting‬ ‭the‬ ‭model‬ ‭in‬ ‭the‬ ‭context‬ ‭of‬ ‭the‬ ‭data‬ ‭requires‬ ‭students‬ ‭to‬
‭express‬ ‭a‬ ‭relationship‬ ‭between‬ ‭the‬ ‭two‬ ‭quantities‬ ‭in‬ ‭question‬ ‭and‬ ‭to‬ ‭interpret‬ ‭components‬ ‭of‬ ‭the‬ ‭relationship‬ ‭(such‬ ‭as‬
‭slope and y-intercept) in terms of the situation.‬

‭Students‬ ‭strategically‬ ‭choose‬ ‭and‬ ‭efficiently‬ ‭implement‬ ‭procedures‬ ‭to‬ ‭solve‬ ‭linear‬ ‭equations‬ ‭in‬ ‭one‬ ‭variable‬‭,‬‭understanding‬‭that‬
‭when‬‭they‬‭use‬‭the‬‭properties‬‭of‬‭equality‬‭and‬‭the‬‭concept‬‭oflogical‬‭equivalence,‬‭they‬‭maintain‬‭the‬‭solutions‬‭of‬‭the‬‭original‬‭equation.‬
‭Students‬‭solve‬‭systems‬‭of‬‭two‬‭linear‬‭equations‬‭in‬‭two‬‭variables‬‭and‬‭relate‬‭the‬‭systems‬‭to‬‭pairs‬‭oflines‬‭in‬‭the‬‭plane;‬‭these‬‭intersect‬‭,‬
‭are‬ ‭parallel‬‭,‬ ‭or‬ ‭are‬ ‭the‬ ‭same‬ ‭line.‬ ‭Students‬ ‭use‬ ‭linear‬ ‭equations,‬ ‭systems‬ ‭of‬ ‭linear‬ ‭equations‬‭,‬ ‭linear‬ ‭functions‬‭,‬ ‭and‬ ‭their‬
‭understanding of slope of a line to analyze situations and solve problems.‬

‭2.‬ ‭Students‬‭grasp‬‭the‬‭concept‬‭of‬‭a‬‭function‬‭as‬‭a‬‭rule‬‭that‬‭assigns‬‭to‬‭each‬‭input‬‭exactly‬‭one‬‭output.‬‭They‬‭understand‬‭that‬
‭functions‬‭describe‬‭situations‬‭where‬‭one‬‭quantity‬‭determines‬‭another.‬‭They‬‭can‬‭translate‬‭among‬‭representations‬‭and‬‭partial‬
‭representations‬ ‭of‬ ‭functions‬ ‭(noting‬ ‭that‬ ‭tabular‬ ‭and‬ ‭graphical‬ ‭representations‬ ‭may‬ ‭be‬ ‭partial‬‭representations)‬‭,‬‭and‬‭they‬
‭describe how aspects of the function are reflected in the different representations.‬







‭3.‬ ‭Students‬‭use‬‭ideas‬‭about‬‭distance‬‭and‬‭angles,‬‭how‬‭they‬‭behave‬‭under‬‭translations,‬‭rotations,‬‭reflections,‬‭and‬‭dilations,‬‭and‬
‭ideas‬ ‭about‬ ‭congruence‬ ‭and‬ ‭similarity‬ ‭to‬ ‭describe‬ ‭and‬ ‭analyze‬ ‭two-dimensional‬ ‭figures‬ ‭and‬‭to‬‭solve‬‭problems‬‭.‬‭Students‬
‭show‬‭that‬‭the‬‭sum‬‭of‬‭the‬‭angles‬‭in‬‭a‬‭triangle‬‭is‬‭the‬‭angle‬‭formed‬‭by‬‭a‬‭straight‬‭line,‬‭and‬‭that‬‭various‬‭configurations‬‭of‬‭lines‬
‭give‬‭rise‬‭to‬‭similar‬‭triangles‬‭because‬‭of‬‭the‬‭angles‬‭created‬‭when‬‭a‬‭transversal‬‭cuts‬‭parallel‬‭lines.‬‭Students‬‭understand‬‭that‬
‭statement‬‭of‬‭the‬‭Pythagorean‬‭Theorem‬‭and‬‭its‬‭converse,‬‭and‬‭can‬‭explain‬‭why‬‭the‬‭Pythagorean‬‭Theorem‬‭holds,‬‭for‬‭example,‬
‭by‬‭decomposing‬‭a‬‭square‬‭in‬‭two‬‭different‬‭ways.‬‭They‬‭apply‬‭the‬‭Pythagorean‬‭Theorem‬‭to‬‭find‬‭distances‬‭between‬‭points‬‭on‬
‭the‬ ‭coordinate‬ ‭plane,‬ ‭to‬ ‭find‬ ‭lengths,‬ ‭and‬ ‭to‬ ‭analyze‬ ‭polygons.‬ ‭Students‬ ‭complete‬ ‭their‬ ‭work‬ ‭on‬ ‭volume‬ ‭by‬ ‭solving‬
‭problems involving cones, cylinders, and spheres.‬

‭The Number System‬
‭Know that there are numbers that are not rational, and approximate them by rational numbers.‬

‭1.‬ ‭Understand‬‭informally‬‭that‬‭every‬‭number‬‭has‬‭a‬‭decimal‬‭expansion;‬‭for‬‭rational‬‭numbers‬‭show‬‭that‬‭the‬‭decimal‬
‭expansion repeats‬‭eventually,‬‭and convert a decimal‬‭expansion‬‭which‬‭repeats eventually into a rational‬‭number.‬

‭2.‬ ‭Use‬ ‭rational‬ ‭approximations‬ ‭of‬ ‭irrational‬ ‭numbers‬ ‭to‬ ‭compare‬ ‭the‬ ‭size‬ ‭of‬ ‭irrational‬ ‭numbers,‬ ‭locate‬ ‭them‬
‭approximately‬ ‭on‬ ‭a‬ ‭number‬ ‭line‬ ‭diagram,‬ ‭and‬ ‭estimate‬ ‭the‬ ‭value‬ ‭of‬ ‭expressions‬ ‭(e.g.,‬ ‭f}2).‬ ‭For‬ ‭example,‬ ‭by‬
‭truncating the decimal expansion of‬

‭Ԅ‬ ‭2,‬ ‭show‬ ‭that‬ ‭Ԅ‬ ‭2‬ ‭is‬ ‭between‬ ‭1‬ ‭and‬ ‭2,‬ ‭the‬ ‭between‬ ‭1.4‬ ‭and‬ ‭1.5,‬ ‭and‬ ‭explain‬ ‭how‬ ‭to‬ ‭continue‬ ‭on‬ ‭to‬ ‭get‬ ‭better‬
‭approximations.‬

‭Expressions and Equations‬



‭Work with radicals and integer exponents.‬

‭1.‬ ‭Know‬‭and‬‭apply‬‭the‬‭properties‬‭of‬‭integer‬‭exponents‬‭to‬‭generate‬‭equivalent‬‭numerical‬‭expressions.‬‭For‬‭example,‬‭32‬‭x‬
‭3-5‬‭=‬‭3-3‬

‭=‬‭1/33‬‭=‬‭1/27.‬

‭2.‬ ‭Use‬‭square‬‭root‬‭and‬‭cube‬‭root‬‭symbols‬‭to‬‭represent‬‭solutions‬‭to‬‭equations‬‭of‬‭the‬‭form‬‭x2‬‭=‬‭p‬‭and‬‭x3‬‭=‬‭p,‬‭where‬‭pis‬
‭a‬ ‭positive‬ ‭rational‬ ‭number.‬ ‭Evaluate‬ ‭square‬ ‭roots‬ ‭of‬ ‭small‬ ‭perfect‬ ‭squares‬ ‭and‬ ‭cube‬‭roots‬‭of‬‭small‬‭perfect‬‭cubes.‬
‭Know that‬‭Ԅ‬‭2 is‬‭irrational.‬

‭3.‬ ‭Use‬‭numbers‬‭expressed‬‭in‬‭the‬‭form‬‭of‬‭a‬‭single‬‭digit‬‭times‬‭a‬‭whole-number‬‭power‬‭of‬‭10‬‭to‬‭estimate‬‭very‬‭large‬‭or‬
‭very‬ ‭small‬ ‭quantities,‬ ‭and‬ ‭to‬ ‭express‬ ‭how‬ ‭many‬ ‭times‬ ‭as‬ ‭much‬ ‭one‬ ‭is‬ ‭than‬ ‭the‬ ‭other.‬ ‭For‬ ‭example,‬ ‭estimate‬ ‭the‬
‭population‬‭of‬‭the‬‭United‬‭States‬‭as‬‭3‬‭times‬‭108‬‭and‬‭the‬‭population‬‭of‬‭the‬‭world‬‭as‬‭7‬‭times‬‭109,‬‭and‬‭determine‬‭that‬
‭the world population is more than 20 times larger.‬

‭4.‬ ‭Perform‬‭operations‬‭with‬‭numbers‬‭expressed‬‭in‬‭scientific‬‭notation,‬‭including‬‭problems‬‭where‬‭both‬‭decimal‬‭and‬
‭scientific‬‭notation‬‭are‬‭used.‬‭Use‬‭scientific‬‭notation‬‭and‬‭choose‬‭units‬‭of‬‭appropriate‬‭size‬‭for‬‭measurements‬‭of‬‭very‬
‭large‬ ‭or‬‭very‬‭small‬‭quantities‬‭(e.g.,‬‭use‬‭millimeters‬‭per‬‭year‬‭for‬‭seafloor‬‭spreading).‬‭Interpret‬‭scientific‬‭notation‬
‭that has been generated by technology.‬

‭Understand the connections between proportional relationships, lines, and linear equations.‬

‭5.‬ ‭Graph‬‭proportional‬‭relationships‬‭,‬‭interpreting‬‭the‬‭unit‬‭rate‬‭as‬‭the‬‭slope‬‭of‬‭the‬‭graph.‬‭Compare‬‭two‬‭different‬
‭proportional‬ ‭relationships‬ ‭represented‬ ‭in‬ ‭different‬ ‭ways‬‭.‬ ‭For‬ ‭example‬‭,‬ ‭compare‬ ‭a‬ ‭distance-time‬ ‭graph‬ ‭to‬ ‭a‬
‭distance-time equation to determine which of two moving objects has greater speed.‬

‭6.‬ ‭Use‬‭similar‬‭triangles‬‭to‬‭explain‬‭why‬‭the‬‭slope‬‭mis‬‭the‬‭same‬‭between‬‭any‬‭two‬‭distinct‬‭points‬‭on‬‭a‬‭non-vertical‬‭line‬
‭in‬ ‭the‬ ‭coordinate‬ ‭plane‬‭;‬ ‭derive‬ ‭the‬ ‭equation‬ ‭y‬ ‭=‬ ‭mx‬ ‭for‬‭a‬‭line‬‭through‬‭the‬‭origin‬‭and‬‭the‬‭equation‬‭y‬‭=‬‭mx‬‭+‬‭b‬‭for‬‭a‬‭line‬
‭intercepting the vertical axis at b.‬



‭Analyze and solve linear equations and pairs of simultaneous linear equations.‬

‭7.‬ ‭Solve linear equations in one variable.‬

‭a.‬ ‭Give‬ ‭examples‬ ‭of‬ ‭linear‬ ‭equations‬ ‭in‬ ‭one‬ ‭variable‬ ‭with‬ ‭one‬ ‭solution,‬ ‭infinitely‬‭many‬‭solutions,‬‭or‬‭no‬
‭solutions.‬‭Show‬‭which‬‭of‬‭these‬‭possibilities‬‭is‬‭the‬‭case‬‭by‬‭successively‬‭transforming‬‭the‬‭given‬‭equation‬‭into‬
‭simpler‬‭forms,‬‭until‬‭an‬‭equivalent‬‭equation‬‭of‬‭the‬‭form‬‭x‬‭=‬‭a‬‭,‬‭a‬‭=‬‭a,‬‭or‬‭a=‬‭b‬‭results‬‭(where‬‭a‬‭and‬‭bare‬‭different‬
‭numbers).‬

‭b.‬ ‭Solve‬‭linear‬‭equations‬‭with‬‭rational‬‭number‬‭coefficients,‬‭including‬‭equations‬‭whose‬‭solutions‬‭require‬
‭expanding expressions using the distributive property and collecting like terms.‬

‭8.‬ ‭Analyze and solve pairs of simultaneous‬‭linear equations.‬

‭a.‬ ‭Understand‬‭that‬‭solutions‬‭to‬‭a‬‭system‬‭of‬‭two‬‭linear‬‭equations‬‭in‬‭two‬‭variables‬‭correspond‬‭to‬‭points‬‭of‬
‭intersection of their graphs‬‭,‬‭because points of intersection‬‭satisfy both equations simultaneously‬‭.‬

‭b.‬ ‭Solve‬‭systems‬‭of‬‭two‬‭linear‬‭equations‬‭in‬‭two‬‭variables‬‭algebraically‬‭,‬‭and‬‭estimate‬‭solutions‬‭by‬‭graphing‬‭the‬
‭equations.‬ ‭Solve‬ ‭simple‬ ‭cases‬ ‭by‬ ‭inspection.‬ ‭For‬ ‭example‬‭,‬ ‭3x‬ ‭+‬ ‭2y‬ ‭=‬ ‭5‬ ‭and‬ ‭3x‬ ‭+‬ ‭2y‬ ‭=‬ ‭6‬ ‭have‬ ‭no‬ ‭solution‬
‭because 3x + 2y cannot simultaneously be 5 & 6‬‭.‬

‭c.‬ ‭Solve‬‭real-world‬‭and‬‭mathematical‬‭problems‬‭from‬‭a‬‭variety‬‭of‬‭cultural‬‭contexts‬‭,‬‭including‬‭those‬‭of‬‭Montana‬
‭American‬ ‭Indians‬‭,‬ ‭leading‬ ‭to‬ ‭two‬ ‭linear‬ ‭equations‬ ‭in‬ ‭two‬ ‭variables.‬‭For‬‭example‬‭,‬‭given‬‭coordinates‬‭for‬‭two‬
‭pairs‬‭of‬‭points‬‭,‬‭determine‬‭whether‬‭the‬‭line‬‭through‬‭the‬‭first‬‭pair‬‭of‬‭points‬‭intersects‬‭the‬‭line‬‭through‬‭the‬‭second‬
‭pair.‬

‭Functions‬
‭Define, evaluate, and compare functions.‬



‭1.‬ ‭Understand‬‭that‬‭a‬‭function‬‭is‬‭a‬‭rule‬‭that‬‭assigns‬‭to‬‭each‬‭input‬‭exactly‬‭one‬‭output.‬‭The‬‭graph‬‭of‬‭a‬‭function‬‭is‬‭the‬‭set‬‭of‬
‭ordered pairs consisting of an input and the corresponding output.‬

‭2.‬ ‭Compare‬‭properties‬‭of‬‭two‬‭functions‬‭each‬‭represented‬‭in‬‭a‬‭different‬‭way‬‭(algebraically‬‭,‬‭graphically‬‭,‬‭numerically‬‭in‬
‭tables‬‭,‬‭or‬‭by‬‭verbal‬‭description).‬‭For‬‭example‬‭,‬‭given‬‭a‬‭linear‬‭function‬‭represented‬‭b‬‭y‬‭a‬‭table‬‭of‬‭values‬‭and‬‭a‬‭linear‬
‭function represented by an algebraic e‬‭x‬‭pression‬‭,‬‭determine‬‭which function has the greater rate of change.‬

‭3.‬ ‭Interpret‬‭the‬‭equation‬‭y‬‭=‬‭mx‬‭+‬‭b‬‭as‬‭defining‬‭a‬‭linear‬‭function‬‭,‬‭whose‬‭graph‬‭is‬‭a‬‭straight‬‭line‬‭;‬‭give‬‭examples‬‭of‬
‭functions‬‭that‬‭are‬‭not‬‭linear‬‭.‬‭For‬‭example‬‭,‬‭the‬‭function‬‭A‬‭=‬‭s2‬‭giving‬‭the‬‭area‬‭of‬‭a‬‭square‬‭as‬‭a‬‭function‬‭of‬‭its‬‭side‬‭length‬‭is‬‭not‬
‭linear because its graph contains the points (1, 1)‬‭,‬‭(2‬‭,‬‭4) and 3, 9), which are not on a straight line.‬

‭Use functions to model relationships between quantities.‬

‭4.‬ ‭Construct‬‭a‬‭function‬‭to‬‭model‬‭a‬‭linear‬‭relationship‬‭between‬‭two‬‭quantities.‬‭Determine‬‭the‬‭rate‬‭of‬‭change‬‭and‬‭initial‬
‭value‬‭of‬‭the‬‭function‬‭from‬‭a‬‭description‬‭of‬‭a‬‭relationship‬‭or‬‭from‬‭two‬‭(x‬‭,‬‭y)‬‭values,‬‭including‬‭reading‬‭these‬‭from‬‭a‬‭table‬‭or‬
‭from‬ ‭a‬ ‭graph.‬ ‭Interpret‬ ‭the‬‭rate‬‭of‬‭change‬‭and‬‭initial‬‭value‬‭of‬‭a‬‭linear‬‭function‬‭in‬‭terms‬‭of‬‭the‬‭situation‬‭it‬‭models‬‭,‬‭and‬‭in‬
‭terms of its graph or a table of values‬‭.‬

‭5.‬ ‭Describe‬‭qualitatively‬‭the‬‭functional‬‭relationship‬‭between‬‭two‬‭quantities‬‭by‬‭analyzing‬‭a‬‭graph‬‭(e.g.,‬‭where‬‭the‬
‭function‬ ‭is‬ ‭increasing‬ ‭or‬ ‭decreasing‬‭,‬ ‭linear‬ ‭or‬‭nonlinear).‬‭Sketch‬‭a‬‭graph‬‭that‬‭exhibits‬‭the‬‭qualitative‬‭features‬‭of‬‭a‬
‭function that has been described verbally.‬

‭Geometry‬
‭Understand congruence and similarity using physical models, transparencies, or geometry software.‬

‭1.‬ ‭Verify‬‭e‬‭x‬‭perimentally‬‭the‬‭properties‬‭of‬‭rotations,‬‭reflections‬‭,‬‭and‬‭translations‬‭from‬‭a‬‭variety‬‭of‬‭cultural‬‭contexts‬‭,‬
‭including those of Montana American Indians‬‭:‬



‭a.‬ ‭Lines are taken to lines‬‭,‬‭and line segments to line segments of the same length.‬

‭b.‬ ‭Angles are taken to angles of the‬‭same measure‬‭.‬

‭c.‬ ‭Parallel lines are taken to parallel‬‭lines.‬

‭2.‬ ‭Understand‬ ‭that‬ ‭a‬‭two-dimensional‬‭figure‬‭is‬‭congruent‬‭to‬‭another‬‭if‬‭the‬‭second‬‭can‬‭be‬‭obtained‬‭from‬‭the‬‭first‬‭by‬‭a‬
‭sequence‬ ‭of‬ ‭rotations,‬ ‭reflections,‬ ‭and‬ ‭translations;‬ ‭given‬ ‭two‬ ‭congruent‬ ‭figures,‬ ‭describe‬ ‭a‬ ‭sequence‬ ‭that‬ ‭exhibits‬‭the‬
‭congruence between them.‬

‭3.‬ ‭Describe‬‭the‬‭effect‬‭of‬‭dilations‬‭,‬‭translations,‬‭rotations‬‭,‬‭and‬‭reflections‬‭on‬‭two-dimensional‬‭figures‬‭from‬‭a‬‭variety‬‭of‬
‭cultural contexts‬‭,‬‭including those of Montana American‬‭Indians: using coordinates.‬

‭4.‬ ‭Understand‬‭that‬‭a‬‭two-dimensional‬‭figure‬‭is‬‭similar‬‭to‬‭another‬‭if‬‭the‬‭second‬‭can‬‭be‬‭obtained‬‭from‬‭the‬‭first‬‭by‬‭a‬‭sequence‬
‭of‬‭rotations‬‭,‬‭reflections,‬‭translations‬‭,‬‭and‬‭dilations‬‭;‬‭given‬‭two‬‭similar‬‭two-dimensional‬‭figures,‬‭describe‬‭a‬‭sequence‬‭that‬
‭exhibits the similarity between them.‬

‭5.‬ ‭Use‬‭informal‬‭arguments‬‭to‬‭establish‬‭facts‬‭about‬‭the‬‭angle‬‭sum‬‭and‬‭exterior‬‭angle‬‭of‬‭triangles‬‭,‬‭about‬‭the‬‭angles‬‭created‬
‭when‬ ‭parallel‬ ‭lines‬ ‭are‬ ‭cut‬ ‭by‬ ‭a‬ ‭transversal‬‭,‬ ‭and‬ ‭the‬ ‭angle-angle‬ ‭criterion‬ ‭for‬ ‭similarity‬ ‭of‬ ‭triangles.‬ ‭For‬ ‭example,‬
‭arrange‬ ‭three‬ ‭copies‬ ‭of‬ ‭the‬ ‭same‬ ‭triangle‬ ‭so‬ ‭that‬ ‭the‬ ‭sum‬ ‭of‬ ‭the‬ ‭three‬ ‭angles‬ ‭appears‬ ‭to‬ ‭form‬ ‭a‬ ‭line‬‭,‬ ‭and‬ ‭give‬ ‭an‬
‭argument in terms of transversals why this is so‬‭.‬

‭Understand and apply the Pythagorean Theorem‬

‭6.‬ ‭E‬‭x‬‭plain a proof of the Pythagorean‬‭Theorem and its converse‬‭.‬

‭7.‬ ‭Apply‬‭the‬‭Pythagorean‬‭Theorem‬‭to‬‭determine‬‭unknown‬‭side‬‭lengths‬‭in‬‭right‬‭triangles‬‭in‬‭real-world‬‭and‬‭mathematical‬
‭problems‬‭in‬‭two‬‭and‬‭three‬‭dimensions‬‭.‬‭For‬‭example,‬‭determine‬‭the‬‭unknown‬‭height‬‭of‬‭a‬‭Plains‬‭Indian‬‭tipi‬‭when‬‭given‬‭the‬
‭side length and radius‬‭.‬



‭8.‬ ‭Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.‬

‭Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.‬

‭9.‬ ‭Know‬‭the‬‭formulas‬‭for‬‭the‬‭volumes‬‭of‬‭cones‬‭,‬‭cylinders‬‭,‬‭and‬‭spheres‬‭and‬‭use‬‭them‬‭to‬‭solve‬‭real-world‬‭and‬
‭mathematical problems.‬

‭Statistics and Probability‬
‭Investigate patterns of association in bivariate data.‬

‭1.‬ ‭Construct‬‭and‬‭interpret‬‭scatter‬‭plots‬‭for‬‭bivariate‬‭measurement‬‭data‬‭to‬‭investigate‬‭patterns‬‭of‬‭association‬‭between‬
‭two‬‭quantities.‬‭Describe‬‭patterns‬‭such‬‭as‬‭clustering,‬‭outliers‬‭,‬‭positive‬‭or‬‭negative‬‭association‬‭,‬‭linear‬‭association‬‭,‬
‭and nonlinear association.‬

‭2.‬ ‭Know‬‭that‬‭straight‬‭lines‬‭are‬‭widely‬‭used‬‭to‬‭model‬‭relationships‬‭between‬‭two‬‭quantitative‬‭variables.‬‭For‬‭scatter‬
‭plots‬‭that‬‭suggest‬‭a‬‭linear‬‭association‬‭,‬‭informally‬‭fit‬‭a‬‭straight‬‭line‬‭,‬‭and‬‭informally‬‭assess‬‭the‬‭model‬‭fit‬‭by‬‭judging‬
‭the closeness of the data points to the line.‬

‭3.‬ ‭Use‬‭the‬‭equation‬‭of‬‭a‬‭linear‬‭model‬‭to‬‭solve‬‭problems‬‭in‬‭the‬‭context‬‭of‬‭bivariate‬‭measurement‬‭data‬‭,‬‭interpreting‬‭the‬
‭slope‬ ‭and‬ ‭intercept.‬ ‭For‬ ‭example‬‭,‬ ‭in‬ ‭a‬ ‭linear‬ ‭model‬ ‭for‬ ‭a‬ ‭biology‬ ‭experiment‬‭,‬ ‭interpret‬ ‭a‬ ‭slope‬ ‭of‬ ‭1.5‬ ‭cm/hr‬ ‭as‬
‭meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.‬

‭4.‬ ‭Understand‬‭that‬‭patterns‬‭of‬‭association‬‭can‬‭also‬‭be‬‭seen‬‭in‬‭bivariate‬‭categorical‬‭data‬‭by‬‭displaying‬‭frequencies‬‭and‬
‭relative‬‭frequencies‬‭in‬‭a‬‭two-way‬‭table.‬‭Construct‬‭and‬‭interpret‬‭a‬‭two-way‬‭table‬‭summarizing‬‭data‬‭including‬‭data‬‭from‬
‭Montana‬ ‭American‬ ‭Indian‬ ‭sources‬ ‭on‬ ‭two‬ ‭categorical‬ ‭v‬‭ariables‬ ‭collected‬ ‭from‬ ‭the‬ ‭same‬ ‭subjects.‬ ‭Use‬ ‭relative‬
‭frequencies‬‭calculated‬‭for‬‭rows‬‭or‬‭columns‬‭to‬‭describe‬‭possible‬‭association‬‭between‬‭the‬‭two‬‭variables‬‭.‬‭For‬‭example‬‭,‬
‭collect‬‭data‬‭from‬‭students‬‭in‬‭your‬‭class‬‭on‬‭whether‬‭or‬‭not‬‭they‬‭have‬‭a‬‭curfew‬‭on‬‭school‬‭nights‬‭and‬‭whether‬‭or‬‭not‬‭they‬
‭have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?‬



‭HIGH SCHOOL MATH‬
‭ALGEBRA I‬

‭9-11‬

‭STANDARD 1:  NUMBER & QUANTITY‬
‭The NUMBER & QUANTITY standard is comprised of the real number system, quantities, the complex number system and vector‬
‭and matrix quantities.  Students will be exposed to yet another extension of‬‭number‬‭, when the real numbers‬‭are augmented by the‬
‭imaginary numbers to form the complex numbers. With each extension of number, the meanings of addition, subtraction,‬
‭multiplication, and division are extended. In each new number system— integers, rational numbers, real numbers, and complex‬
‭numbers—the four operations stay the same in two important ways: They have the commutative, associative, and distributive‬
‭properties and their new meanings are consistent with their previous meanings.‬

‭In real world problems, the answers are usually not numbers but‬‭quantities‬‭:  numbers with units, which‬‭involves measurement.‬
‭Students encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as‬
‭person-hours and heating degree days, social science rates such as per-capita income, and rates in everyday life such as points scored‬
‭per game or batting averages.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.1NQ.1.RN‬ ‭Real Numbers‬ ‭Extend the properties of exponents to rational exponents.‬
‭a.‬ ‭Explain how the definition of the meaning of rational exponents follows from‬

‭extending the properties of integer exponents to those values, allowing for a notation‬
‭for radicals in terms of rational exponent.  For example, we define 51/3 to be the cube‬
‭root of 5 because we want (51/3) 3 = 5(1/3)3 to hold, so (51/3) 3 must equal 5.‬
‭(N-RN.1)‬

‭b.‬ ‭Rewrite expressions involving radicals and rational exponents using the properties of‬
‭exponents. (N-RN.2)‬

‭HS.M.1NQ.2.RN‬ ‭Real Numbers‬ ‭Use properties of rational‬‭and irrational numbers.‬



‭a.‬ ‭Explain why the sum or product of two rational numbers is rational; that the sum of a‬
‭rational number and an irrational number is irrational; and that the product of a‬
‭nonzero rational number and an irrational number is irrational. (N.RN.3)‬

‭HS.M.1NQ.3.NQ‬ ‭Quantities‬ ‭Reason quantitatively and‬‭use units to solve problems.‬
‭a.‬ ‭Use units as a way to understand problems from a variety of contexts (e.g., science,‬

‭history, and culture), including those of Montana American Indians, and to guide the‬
‭solution of multi-step problems; choose and interpret units consistently in formulas;‬
‭choose and interpret the scale and the origin in graphs and data displays. (N-Q.1)‬

‭b.‬ ‭Define appropriate quantities for the purpose of descriptive modeling. (N-Q.2)‬

‭c.‬ ‭Choose a level of accuracy appropriate to limitations on measurement when reporting‬
‭quantities. (N-Q.3)‬



‭STANDARD 2:  ALGEBRA‬

‭The ALGEBRA standard is comprised of expressions, equations and inequalities, and connections to functions and modeling.  An‬
‭expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at‬
‭more advanced levels, the operation of evaluating a function. Conventions about the use of parentheses and the order of operations‬
‭assure that each expression is unambiguous. Creating an expression that describes a computation involving a general quantity requires‬
‭the ability to express the computation in general terms, abstracting from specific instances.‬

‭An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the‬
‭expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values‬
‭of the variables; identities are often developed by rewriting an expression in an equivalent form.  The solutions of an equation in one‬
‭variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be‬
‭plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy‬
‭every equation and inequality in the system.‬

‭Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same‬
‭value for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation.‬
‭Converting a verbal description to an equation, inequality, or system of these is an essential skill in modeling.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.2A.1.SSE‬ ‭Seeing Structure‬ ‭Interpret the structure‬‭of expressions.‬‭(A-SSE.1)‬



‭In Expressions‬ ‭a.  Interpret expressions that represent a quantity in terms of its context.‬
‭i.‬ ‭Interpret parts of an expression, such as terms, factors, and coefficients.‬
‭ii.‬ ‭Interpret complicated expressions by viewing one or more of their parts as a single‬

‭entity. For example, interpret P(1+r)n as the product of P and a factor not‬
‭depending on P.‬

‭b.‬ ‭Use the structure of an expression to identify ways to rewrite it. For example, see x4 –‬
‭y4 as (x2 ) 2 – (y2 ) 2 , thus recognizing it as a difference of squares that can be‬
‭factored as (x2 – y2 )(x2 + y2 ). (A-SSE.2)‬

‭HS.M.2A.2.SSE‬ ‭Seeing Structure‬ ‭Write expressions in equivalent forms to solve problems.‬
‭In Expressions‬ ‭a.‬ ‭Choose and produce an equivalent‬‭form of an expression to reveal and explain‬

‭properties of the quantity represented by the expression. (A-SEE.3)‬
‭i.‬ ‭Factor a quadratic expression to reveal the zeros of the function it defines.‬
‭ii.‬ ‭Complete the square in a quadratic expression to reveal the maximum or minimum‬

‭value of the function it defines.‬
‭iii.‬ ‭Use the properties of exponents to transform expressions for exponential‬

‭functions. For example, the expression 1.15t can be rewritten as (1.151/12) 12t ≈‬
‭1.01212t to reveal the approximate equivalent monthly interest rate if the annual‬
‭rate is 15%.‬

‭HS.M.2A.3.APR‬ ‭Arithmetic with‬ ‭Perform arithmetic operations on polynomials‬‭.‬
‭Polynomials and‬ ‭a.   Understand that polynomials‬‭form a system analogous to the integers, namely, they‬
‭Rational Expressions‬ ‭are closed under the operations‬‭of addition, subtraction, and multiplication; add,‬

‭subtract, and multiply polynomials. (A-APR.1)‬



‭HS.M.2A.7.CED‬ ‭Creating Equations‬ ‭Create equations that describe numbers or relationships.‬
‭a.‬ ‭Create equations and inequalities in one variable and use them to solve problems from‬

‭a variety of contexts (e.g., science, history, and culture), including those of Montana‬
‭American Indians. Include equations arising from linear and quadratic functions, and‬
‭simple rational and exponential functions. (A-CED.1)‬

‭b.‬ ‭Create equations in two or more variables to represent relationships between‬
‭quantities; graph equations on coordinate axes with labels and scales. (A-CED.2)‬

‭c.‬ ‭Represent constraints by equations or inequalities and by systems of equations and/or‬
‭inequalities, and interpret solutions as viable or nonviable options in a modeling‬
‭context. For example, represent inequalities describing nutritional and cost constraints‬
‭on combinations of different foods. (A-CED.3)‬

‭d.‬ ‭Rearrange formulas to highlight a quantity of interest using the same reasoning as in‬
‭solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.‬
‭(A-CED.4)‬

‭HS.M.2A.8.REI‬ ‭Reasoning with‬ ‭Understand solving equations as a process of reasoning and explain the reasoning.‬
‭Equations and‬ ‭a.‬ ‭Explain each step in solving a simple‬‭equation as following from the equality of‬
‭Inequalities‬ ‭numbers asserted at the previous step,‬‭starting from the assumption that the original‬

‭equation has a solution. Construct a viable argument to justify a solution method.‬
‭(A-REI.1)‬

‭HS.M.2A.9.REI‬ ‭Reasoning with‬ ‭Solve equations and inequalities in one variable.‬
‭Equations and‬ ‭a.‬ ‭Solve linear equations and inequalities‬‭in one variable, including equations with‬
‭Inequalities‬ ‭coefficients represented by letters.‬‭(A-REI.3)‬

‭b.‬ ‭Solve quadratic equations in one variable. (A-REI.4)‬



‭i.‬ ‭Use the method of completing the square to transform any quadratic equation in x‬
‭into an equation of the form (x – p) 2 = q that has the same solutions. Derive the‬
‭quadratic formula from this form.‬

‭ii.‬ ‭Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots,‬
‭completing the square, the quadratic formula and factoring, as appropriate to the‬
‭initial form of the equation. Recognize when the quadratic formula gives complex‬
‭solutions and write them as a ± bi for real numbers a and b.‬

‭HS.M.2A.10.REI‬ ‭Reasoning with‬ ‭Solve systems of equations.‬
‭Equations and‬ ‭a.‬ ‭Prove that, given a system of two‬‭equations in two variables, replacing one equation‬
‭Inequalities‬ ‭by the sum of that equation and a multiple‬‭of the other produces a system with the‬

‭same solutions. (A-REI.5)‬

‭b.‬ ‭Solve systems of linear equations exactly and approximately (e.g., with graphs),‬
‭focusing on pairs of linear equations in two variables. (AREI.6)‬

‭c.‬ ‭Solve a simple system consisting of a linear equation and a quadratic equation in two‬
‭variables algebraically and graphically. For example, find the points of intersection‬
‭between the line y = –3x and the circle x2 + y2 = 3. (A-REI.7)‬

‭HS.M.2A.11.REI‬ ‭Reasoning with‬ ‭Represent and solve equations and inequalities graphically.‬
‭Equations and‬ ‭a.‬ ‭Understand that the graph of an‬‭equation in two variables is the set of all its solutions‬
‭Inequalities‬ ‭plotted in the coordinate plane, often‬‭forming a curve (which could be a line).‬

‭(A-REI.10)‬

‭b.‬ ‭Explain why the x-coordinates of the points where the graphs of the equations y = f(x)‬
‭and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions‬
‭approximately, e.g., using technology to graph the functions, make tables of values, or‬



‭find successive approximations. Include cases where f(x) and/or g(x) are linear,‬
‭polynomial, rational, absolute value, exponential, and logarithmic functions.‬
‭(A-REI.11)‬

‭c.‬ ‭Graph the solutions to a linear inequality in two variables as a half-plane (excluding‬
‭the boundary in the case of a strict inequality), and graph the solution set to a system‬
‭of linear inequalities in two variables as the intersection of the corresponding‬
‭half-planes. (A-REI.12)‬

‭STANDARD 3:  FUNCTIONS‬
‭The FUNCTIONS standard is comprised of interpreting and building functions.  It also covers their connections to expressions,‬
‭equations, modeling and coordinates through linear, quadratic, and exponential models, as well as, trigonometric functions. Functions‬
‭describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage‬



‭rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies‬
‭between quantities in nature and society, functions are important tools in the construction of mathematical models.‬

‭FUNCTIONS usually have numerical inputs and outputs and are often defined by an algebraic expression. The set of inputs to a‬
‭function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for‬
‭which the function makes sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a‬
‭seismograph); by a verbal rule, as in, “I’ll give you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx;‬
‭or by a recursive rule. Two important families of functions characterized by laws of growth are linear functions, which grow at a‬
‭constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe‬
‭proportional relationships.‬

‭Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves‬
‭solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions‬
‭can be visualized from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently‬
‭used in modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or‬
‭other technology.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.3F.1IF‬ ‭Interpreting‬ ‭Understand the concept of a function and use function notation.‬
‭Functions‬ ‭a.‬ ‭Understand that a function from one set‬‭(called the domain) to another set (called the‬

‭range) assigns to each element of the domain exactly one element of the range. If f is a‬
‭function and x is an element of its domain, then f(x) denotes the output of f‬
‭corresponding to the input x. The graph of f is the graph of the equation y = f(x).‬
‭(F-IF.1)‬

‭b.‬ ‭Use function notation, evaluate functions for inputs in their domains, and interpret‬
‭statements that use function notation in terms of a context. (F-IF.2)‬

‭c.‬ ‭Recognize that sequences are functions, sometimes defined recursively, whose domain‬
‭is a subset of the integers. For example, the Fibonacci sequence is defined recursively‬



‭by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. (F-IF.3)‬

‭HS.M.3F.2IF‬ ‭Interpreting‬ ‭Interpret functions that‬‭arise in applications in terms of context.‬
‭Functions‬ ‭a.‬ ‭For a function that models a relationship‬‭between two quantities, interpret key features‬

‭of graphs and tables in terms of the quantities, and sketch graphs showing key features‬
‭given a verbal description of the relationship. Key features include: intercepts;‬
‭intervals where the function is increasing, decreasing, positive, or negative; relative‬
‭maximums and minimums; symmetries; end behavior; and periodicity. (F-IF.4)‬

‭b.‬ ‭Relate the domain of a function to its graph and, where applicable, to the quantitative‬
‭relationship it describes. For example, if the function h(n) gives the number of‬
‭person-hours it takes to assemble n engines in a factory, then the positive integers‬
‭would be an appropriate domain for the function. (F-IF.5)‬

‭c.‬ ‭Calculate and interpret the average rate of change of a function (presented‬
‭symbolically or as a table) over a specified interval. Estimate the rate of change from‬
‭a graph. (F-IF.6)‬

‭HS.M.3F.3IF‬ ‭Interpreting‬ ‭Analyze functions using different representations.‬
‭Functions‬ ‭a.‬ ‭Graph functions expressed symbolically‬‭and show key features of the graph, by hand‬

‭in simple cases and using technology for more complicated cases. (F-IF.7)‬
‭i.‬ ‭Graph linear and quadratic functions and show intercepts, maxima, and minima.‬
‭ii.‬ ‭Graph square root, cube root, and piecewise-defined functions, including step‬

‭functions and absolute value functions.‬
‭iii.‬ ‭Graph exponential and logarithmic functions, showing intercepts and end‬

‭behavior, and trigonometric functions, showing period, midline, and amplitude.‬

‭b.‬ ‭Write a function defined by an expression in different but equivalent forms to reveal‬
‭and explain different properties of the function.  (F-IF.8)‬
‭i.‬ ‭Use the process of factoring and completing the square in a quadratic function to‬

‭show zeros, extreme values, and symmetry of the graph, and interpret these in‬
‭terms of a context.‬



‭ii.‬ ‭Use the properties of exponents to interpret expressions for exponential functions.‬
‭For example, identify percent rate of change in functions such as y = (1.02)t , y =‬
‭(0.97)t , y = (1.01)12t, y = (1.2)t/10 , and classify them as representing exponential‬
‭growth or decay.‬

‭c.‬ ‭Compare properties of two functions each represented in a different way‬
‭(algebraically, graphically, numerically in tables, or by verbal descriptions). For‬
‭example, given a graph of one quadratic function and an algebraic expression for‬
‭another, say which has the larger maximum. (F-IF.9)‬

‭HS.M.3F.4BF‬ ‭Building Functions‬ ‭Build a function that models a relationship between two quantities.‬
‭a.‬ ‭Write a function that describes a relationship between two quantities. (F-BF.1)‬

‭i.‬ ‭Determine an explicit expression, a recursive process, or steps for calculation‬
‭from a context.‬

‭ii.‬ ‭Combine standard function types using arithmetic operations. For example, build a‬
‭function that models the temperature of a cooling body by adding a constant‬
‭function to a decaying exponential, and relate these functions to the model.‬

‭b.‬ ‭Write arithmetic and geometric sequences both recursively and with an explicit‬
‭formula, use them to model situations from a variety of contexts (e.g., science, history,‬
‭and culture, including those of the Montana American Indian), and translate between‬
‭the two forms. (F-BF.2)‬

‭HS.M.3F.5BF‬ ‭Building Functions‬ ‭Build new functions form existing functions.‬
‭a.‬ ‭Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k)‬

‭for specific values of k (both positive and negative); find the value of k given the‬
‭graphs. Experiment with cases and illustrate an explanation of the effects on the graph‬
‭using technology. Include recognizing even and odd functions from their graphs and‬
‭algebraic expressions for them. (F-BF.3)‬



‭b.‬ ‭Find inverse functions. (F-BF.4)‬
‭i.‬ ‭Solve an equation of the form f(x) = c for a simple function f that has an inverse‬

‭and write an expression for the inverse. For example, f(x) =2 x3 or f(x) =‬
‭(x+1)/(x–1) for x ≠ 1.‬

‭HS.M.3F.6LE‬ ‭Linear, Quadratic‬ ‭Construct and compare linear, quadratic, and exponential models and solve‬
‭& Exponential‬ ‭problems.‬
‭Models‬ ‭a.  Distinguish between situations that can‬‭be modeled with linear functions and with‬

‭exponential functions.  (F-LE.1)‬
‭i.‬ ‭Prove that linear functions grow by equal differences over equal intervals, and that‬

‭exponential functions grow by equal factors over equal intervals.‬
‭ii.‬ ‭Recognize situations in which one quantity changes at a constant rate per unit‬

‭interval relative to another.‬
‭iii.‬ ‭Recognize situations in which a quantity grows or decays by a constant percent‬

‭rate per unit interval relative to another.‬

‭b.‬ ‭Construct linear and exponential functions, including arithmetic and geometric‬
‭sequences, given a graph, a description of a relationship, or two input-output pairs‬
‭(include reading these from a table). (F-LE.2)‬

‭c.‬ ‭Observe using graphs and tables that a quantity increasing exponentially eventually‬
‭exceeds a quantity increasing linearly, quadratically, or (more generally) as a‬
‭polynomial function. (F-LE.3)‬



‭HS.M.3F.7LE‬ ‭Linear, Quadratic‬ ‭Interpret expressions for functions in terms of the situation they model‬‭.‬
‭& Exponential‬ ‭a.‬ ‭Interpret the parameters in a linear‬‭or exponential function in terms of a context.‬
‭Models‬ ‭(F-LE.5)‬

‭STANDARD 4:  MODELING‬
‭MODELING links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of‬
‭choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve‬
‭decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using‬
‭mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring‬
‭consequences, and comparing predictions with data.‬

‭A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to‬
‭describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a‬
‭three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a‬
‭delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from‬
‭the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing‬
‭such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as‬
‭well as creativity.‬

‭In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are‬
‭a familiar descriptive model—for example, graphs of global temperature and atmospheric CO2 over time. Analytic modeling seeks to‬



‭explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth‬
‭of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate.‬
‭Functions are an important tool for analyzing such problems.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4M.1‬ ‭Complete the basic modeling cycle.‬
‭a.‬ ‭Identify variables in the situation and selecting those that represent essential features.‬
‭b.‬ ‭Formulate a model by creating and selecting geometric, graphical, tabular, algebraic,‬

‭or statistical representations that describe relationships between the variables.‬
‭c.‬ ‭Analyze and perform operations on these relationships to draw conclusions.‬
‭d.‬ ‭Interpret the results of the mathematics in terms of the original situation.‬
‭e.‬ ‭Validate the conclusions by comparing them with the situation and then either‬

‭improving the model or determining if it is acceptable.‬
‭f.‬ ‭Report on the conclusions and the reasoning behind the model including the choices,‬

‭assumptions, and approximations that are present throughout this cycle.‬

‭STANDARD 5:  GEOMETRY‬

‭This standard covers GEOMETRY principles such as congruence, similarity, right triangles and trigonometry, as well as circles.‬
‭Students also study expressing geometric properties with equations using geometric measurement and dimension, as well as‬
‭connections to equations through modeling.  Students begin to formalize their geometry experiences from elementary and middle‬
‭school, using more precise definitions and developing careful proofs.‬

‭The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation.‬
‭Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to‬
‭preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of symmetry,‬
‭and the symmetries of an object offer insight into its attributes.‬



‭For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. Once these‬
‭triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about‬
‭triangles, quadrilaterals, and other geometric figures. Similarity transformations (rigid motions followed by dilations) define similarity‬
‭in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor"‬
‭developed in the middle grades.‬

‭The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean‬
‭Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right‬
‭triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where‬
‭three pieces of information suffice to completely solve a triangle.‬

‭Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number‬
‭line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two‬
‭dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to‬
‭geometry and vice versa. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric‬
‭understanding, modeling, and proof.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭No Standards in the Geometry domain.‬

‭STANDARD 6:  STATISTICS & PROBABILITY‬

‭The content covered in this standard include interpreting categorical and quant5itative data, making inferences and justifying‬
‭conclusions, conditional probability and the rules of probability, as well as using probability to make decisions.‬



‭Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always‬
‭sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for‬
‭making informed decisions that take it into account.‬

‭Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative‬
‭data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be‬
‭described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or‬
‭median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared‬
‭numerically using these statistics or compared visually using plots.‬

‭Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population‬
‭makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning‬
‭individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome‬
‭is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions‬
‭under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public‬
‭media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as‬
‭the data summaries and the conclusions drawn.‬

‭Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the‬
‭sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it‬
‭might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and‬
‭combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting‬
‭these probabilities relies on an understanding of independence and conditional probability, which can be approached through the‬
‭analysis of two-way tables.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬



‭HS.M.6SP.1ID‬ ‭Interpreting‬ ‭Summarize, represent, and interpret data on a single count or measurement‬
‭Categorical &‬ ‭variable.‬
‭Quantitative Data‬ ‭a.‬ ‭Represent data with plots on‬‭the real number line (dot plots, histograms, and box‬

‭plots). (S-ID.1)‬

‭b.‬ ‭Use statistics appropriate to the shape of the data distribution to compare center‬
‭(median, mean) and spread (interquartile range, standard deviation) of two or more‬
‭different data sets. (S-ID.2)‬

‭c.‬ ‭Interpret differences in shape, center, and spread in the context of the data sets,‬
‭accounting for possible effects of extreme data points (outliers). (S-ID.3)‬

‭HS.M.6SP.2ID‬ ‭Interpreting‬ ‭Summarize, represent, and interpret data on two categorical and quantitative‬
‭Categorical &‬ ‭variables.‬
‭Quantitative Data‬ ‭a.‬ ‭Summarize categorical data for‬‭two categories in two-way frequency tables. Interpret‬

‭relative frequencies in the context of the data (including joint, marginal, and‬
‭conditional relative frequencies). Recognize possible associations and trends in the‬
‭data. (S-ID.5)‬

‭b.‬ ‭Represent data on two quantitative variables on a scatter plot, and describe how the‬
‭variables are related. (S-ID.6)‬
‭i.‬ ‭Fit a function to the data; use functions fitted to data to solve problems in the‬

‭context of the data. Use given functions or choose a function suggested by the‬
‭context. Emphasize linear, quadratic, and exponential models.‬

‭ii.‬ ‭Informally assess the fit of a function by plotting and analyzing residuals.‬
‭iii.‬ ‭Fit a linear function for a scatter plot that suggests a linear association.‬

‭HS.M.6SP.3ID‬ ‭Interpreting‬ ‭Interpret linear models.‬
‭Categorical &‬ ‭a.‬ ‭Interpret the slope (rate of change)‬‭and the intercept (constant term) of a linear model‬
‭Quantitative Data‬ ‭in the context of the data. (S-ID.7)‬

‭b.‬ ‭Compute (using technology) and interpret the correlation coefficient of a linear fit.‬
‭(S-ID.8)‬



‭c.‬ ‭Distinguish between correlation and causation. (S-ID.9)‬



‭HS MATH‬
‭ALGEBRA II‬

‭10-12‬

‭STANDARD 1:  NUMBER & QUANTITY‬
‭The NUMBER & QUANTITY standard is comprised of the real number system, quantities, the complex number system and vector‬
‭and matrix quantities.  Students will be exposed to yet another extension of‬‭number‬‭, when the real numbers‬‭are augmented by the‬
‭imaginary numbers to form the complex numbers. With each extension of number, the meanings of addition, subtraction,‬
‭multiplication, and division are extended. In each new number system— integers, rational numbers, real numbers, and complex‬
‭numbers—the four operations stay the same in two important ways: They have the commutative, associative, and distributive‬
‭properties and their new meanings are consistent with their previous meanings.‬

‭In real world problems, the answers are usually not numbers but‬‭quantities‬‭:  numbers with units, which‬‭involves measurement.‬
‭Students encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as‬
‭person-hours and heating degree days, social science rates such as per-capita income, and rates in everyday life such as points scored‬
‭per game or batting averages.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.1NQ.4.CN‬ ‭Complex Numbers‬ ‭Perform arithmetic operations with complex numbers‬‭.‬
‭a.‬ ‭Know there is a complex number i such that i 2 = –1, and every complex number has‬

‭the form a + bi with a and b real. (N-CN.1)‬

‭b.‬ ‭Use the relation i 2 = –1 and the commutative, associative, and distributive properties‬
‭to add, subtract, and multiply complex numbers. (N-CN.2)‬

‭HS.M.1NQ.6.CN‬ ‭Complex Numbers‬ ‭Use complex numbers in polynomial identities and equations.‬



‭a.‬ ‭Solve quadratic equations with real coefficients that have complex solutions.‬
‭(N-CN.7)‬

‭b.‬ ‭Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as‬
‭(x + 2i)(x – 2i). (N-CN.8)‬

‭c.‬ ‭Know the Fundamental Theorem of Algebra; show that it is true for quadratic‬
‭polynomials. (N-CN.9)‬

‭STANDARD 2:  ALGEBRA‬
‭The ALGEBRA standard is comprised of expressions, equations and inequalities, and connections to functions and modeling.  An‬
‭expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at‬
‭more advanced levels, the operation of evaluating a function. Conventions about the use of parentheses and the order of operations‬
‭assure that each expression is unambiguous. Creating an expression that describes a computation involving a general quantity requires‬
‭the ability to express the computation in general terms, abstracting from specific instances.‬

‭An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the‬
‭expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values‬
‭of the variables; identities are often developed by rewriting an expression in an equivalent form.  The solutions of an equation in one‬
‭variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be‬
‭plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy‬
‭every equation and inequality in the system.‬

‭Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same‬
‭value for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation.‬
‭Converting a verbal description to an equation, inequality, or system of these is an essential skill in modeling.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.2A.1.SSE‬ ‭Seeing Structure‬ ‭Interpret the structure‬‭of expressions.‬‭(A-SSE.1)‬
‭In Expressions‬ ‭a.  Interpret expressions that represent‬‭a quantity in terms of its context.‬

‭i.‬ ‭Interpret parts of an expression, such as terms, factors, and coefficients.‬



‭ii.‬ ‭Interpret complicated expressions by viewing one or more of their parts as a single‬
‭entity. For example, interpret P(1+r)n as the product of P and a factor not‬
‭depending on P.‬

‭b.‬ ‭Use the structure of an expression to identify ways to rewrite it. For example, see x4 –‬
‭y4 as (x2 ) 2 – (y2 ) 2 , thus recognizing it as a difference of squares that can be‬
‭factored as (x2 – y2 )(x2 + y2 ). (A-SSE.2)‬

‭HS.M.2A.2.SSE‬ ‭Seeing Structure‬ ‭Write expressions in equivalent forms to solve problems.‬
‭In Expressions‬ ‭a.‬ ‭Derive the formula for the sum‬‭of a finite geometric series (when the common ratio is‬

‭not 1), and use the formula to solve problems. For example, calculate mortgage‬
‭payments. (A-SSE.4)‬

‭HS.M.2A.3.APR‬ ‭Arithmetic with‬ ‭Perform arithmetic operations on polynomials‬‭.‬
‭Polynomials and‬ ‭a.   Understand that polynomials‬‭form a system analogous to the integers, namely, they‬
‭Rational Expressions‬ ‭are closed under the operations‬‭of addition, subtraction, and multiplication; add,‬

‭subtract, and multiply polynomials. (A-APR.1)‬

‭HS.M.2A.4.APR‬ ‭Arithmetic with‬ ‭Understand the relationship between zeros and factors of polynomials.‬
‭Polynomials and‬ ‭a.‬ ‭Know and apply the Remainder‬‭Theorem: For a polynomial p(x) and a number a, the‬
‭Rational Expressions‬ ‭remainder on division by x –‬‭a is p(a), so p(a) = 0 if and only if (x – a) is a factor of‬

‭p(x). (A-APR.2)‬

‭b.‬ ‭Identify zeros of polynomials when suitable factorizations are available, and use the‬
‭zeros to construct a rough graph of the function defined by the polynomial. (A-APR.3)‬

‭HS.M.2A.5.APR‬ ‭Arithmetic with‬ ‭Use polynomial identities to solve problems.‬
‭Polynomials and‬ ‭a.‬ ‭Prove polynomial identities and‬‭use them to describe numerical relationships. For‬



‭Rational Expressions‬ ‭example, the polynomial identity (x2 + y2 ) 2 = (x2 – y2 ) 2 + (2xy) 2 can be used to‬
‭generate Pythagorean triples. (A-APR.4)‬

‭b.‬ ‭Know and apply the Binomial Theorem for the expansion of (x + y) n in powers of x‬
‭and y for a positive integer n, where x and y are any numbers, with coefficients‬
‭determined for example by Pascal's Triangle. [The Binomial Theorem can be proved‬
‭by mathematical induction or by a combinatorial argument.] (A-APR.5)‬

‭HS.M.2A.6.APR‬ ‭Arithmetic with‬ ‭Rewrite rational expressions.‬
‭Polynomials and‬ ‭a.‬ ‭Rewrite simple rational expressions‬‭in different forms; write a(x) /b(x) in the form‬
‭Rational Expressions‬ ‭q(x) + r(x) /b(x), where a(x),‬‭b(x), q(x), and r(x) are polynomials with the degree of‬

‭r(x) less than the degree of b(x), using inspection, long division, or, for the more‬
‭complicated examples, a computer algebra system. (A-APR.6)‬

‭b.‬ ‭Understand that rational expressions form a system analogous to the rational numbers,‬
‭closed under addition, subtraction, multiplication, and division by a nonzero rational‬
‭expression; add, subtract, multiply, and divide rational expressions. (A-APR.7)‬

‭HS.M.2A.7.CED‬ ‭Creating Equations‬ ‭Create equations that describe numbers or relationships.‬
‭a.‬ ‭Create equations and inequalities in one variable and use them to solve problems from‬

‭a variety of contexts (e.g., science, history, and culture), including those of Montana‬
‭American Indians. Include equations arising from linear and quadratic functions, and‬
‭simple rational and exponential functions. (A-CED.1)‬

‭b.‬ ‭Create equations in two or more variables to represent relationships between‬
‭quantities; graph equations on coordinate axes with labels and scales. (A-CED.2)‬

‭c.‬ ‭Represent constraints by equations or inequalities and by systems of equations and/or‬
‭inequalities, and interpret solutions as viable or nonviable options in a modeling‬
‭context. For example, represent inequalities describing nutritional and cost constraints‬



‭on combinations of different foods. (A-CED.3)‬

‭d.‬ ‭Rearrange formulas to highlight a quantity of interest using the same reasoning as in‬
‭solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.‬
‭(A-CED.4)‬

‭HS.M.2A.8.REI‬ ‭Reasoning with‬ ‭Understand solving equations as a process of reasoning and explain the reasoning.‬
‭Equations and‬ ‭a.‬ ‭Solve simple rational and radical‬‭equations in one variable, and give examples‬
‭Inequalities‬ ‭showing how extraneous solutions may‬‭arise. (AREI.2)‬

‭HS.M.2A.11.REI‬ ‭Reasoning with‬ ‭Represent and solve equations and inequalities graphically.‬
‭Equations and‬ ‭a.‬ ‭Explain why the x-coordinates of‬‭the points where the graphs of the equations y =‬
‭Inequalities‬ ‭f(x) and y = g(x) intersect are the‬‭solutions of the equation f(x) = g(x); find the‬

‭solutions approximately, e.g., using technology to graph the functions, make tables of‬
‭values, or find successive approximations. Include cases where f(x) and/or g(x) are‬
‭linear, polynomial, rational, absolute value, exponential, and logarithmic functions.‬
‭(A-REI.11)‬

‭STANDARD 3:  FUNCTIONS‬

‭The FUNCTIONS standard is comprised of interpreting and building functions.  It also covers their connections to expressions,‬
‭equations, modeling and coordinates through linear, quadratic, and exponential models, as well as, trigonometric functions. Functions‬
‭describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage‬
‭rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies‬
‭between quantities in nature and society, functions are important tools in the construction of mathematical models.‬

‭FUNCTIONS usually have numerical inputs and outputs and are often defined by an algebraic expression. The set of inputs to a‬
‭function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for‬



‭which the function makes sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a‬
‭seismograph); by a verbal rule, as in, “I’ll give you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx;‬
‭or by a recursive rule. Two important families of functions characterized by laws of growth are linear functions, which grow at a‬
‭constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe‬
‭proportional relationships.‬

‭Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves‬
‭solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions‬
‭can be visualized from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently‬
‭used in modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or‬
‭other technology.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.3F.2IF‬ ‭Interpreting‬ ‭Interpret functions that‬‭arise in applications in terms of context.‬
‭Functions‬ ‭a.‬ ‭For a function that models a relationship‬‭between two quantities, interpret key features‬

‭of graphs and tables in terms of the quantities, and sketch graphs showing key features‬
‭given a verbal description of the relationship. Key features include: intercepts;‬
‭intervals where the function is increasing, decreasing, positive, or negative; relative‬
‭maximums and minimums; symmetries; end behavior; and periodicity. (F-IF.4)‬

‭b.‬ ‭Relate the domain of a function to its graph and, where applicable, to the quantitative‬
‭relationship it describes. For example, if the function h(n) gives the number of‬
‭person-hours it takes to assemble n engines in a factory, then the positive integers‬
‭would be an appropriate domain for the function. (F-IF.5)‬

‭c.‬ ‭Calculate and interpret the average rate of change of a function (presented‬
‭symbolically or as a table) over a specified interval. Estimate the rate of change from‬
‭a graph. (F-IF.6)‬

‭HS.M.3F.3IF‬ ‭Interpreting‬ ‭Analyze functions using different representations.‬



‭Functions‬ ‭a.‬ ‭Graph functions expressed symbolically and show key features of the graph, by hand‬
‭in simple cases and using technology for more complicated cases. (F-IF.7)‬
‭i.‬ ‭Graph square root, cube root, and piecewise-defined functions, including step‬

‭functions and absolute value functions.‬
‭ii.‬ ‭Graph polynomial functions, identifying zeros when suitable factorizations are‬

‭available, and showing end behavior.‬
‭iii.‬ ‭Graph exponential and logarithmic functions, showing intercepts and end‬

‭behavior, and trigonometric functions, showing period, midline, and amplitude.‬

‭b.‬ ‭Write a function defined by an expression in different but equivalent forms to reveal‬
‭and explain different properties of the function.  (F-IF.8)‬
‭i.‬ ‭Use the process of factoring and completing the square in a quadratic function to‬

‭show zeros, extreme values, and symmetry of the graph, and interpret these in‬
‭terms of a context.‬

‭ii.‬ ‭Use the properties of exponents to interpret expressions for exponential functions.‬
‭For example, identify percent rate of change in functions such as y = (1.02)t , y =‬
‭(0.97)t , y = (1.01)12t, y = (1.2)t/10 , and classify them as representing exponential‬
‭growth or decay.‬

‭c.‬ ‭Compare properties of two functions each represented in a different way‬
‭(algebraically, graphically, numerically in tables, or by verbal descriptions). For‬
‭example, given a graph of one quadratic function and an algebraic expression for‬
‭another, say which has the larger maximum. (F-IF.9)‬

‭HS.M.3F.4BF‬ ‭Building Functions‬ ‭Build a function that models a relationship between two quantities.‬
‭a.‬ ‭Write a function that describes a relationship between two quantities. (F-BF.1)‬

‭i.‬ ‭Combine standard function types using arithmetic operations. For example, build a‬
‭function that models the temperature of a cooling body by adding a constant‬
‭function to a decaying exponential, and relate these functions to the model.‬

‭HS.M.3F.5BF‬ ‭Building Functions‬ ‭Build new functions form existing functions.‬



‭a.‬ ‭Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k)‬
‭for specific values of k (both positive and negative); find the value of k given the‬
‭graphs. Experiment with cases and illustrate an explanation of the effects on the graph‬
‭using technology. Include recognizing even and odd functions from their graphs and‬
‭algebraic expressions for them. (F-BF.3)‬

‭b.‬ ‭Find inverse functions. (F-BF.4)‬
‭i.‬ ‭Solve an equation of the form f(x) = c for a simple function f that has an inverse‬

‭and write an expression for the inverse. For example, f(x) =2 x3 or f(x) =‬
‭(x+1)/(x–1) for x ≠ 1.‬

‭HS.M.3F.6LE‬ ‭Linear, Quadratic‬ ‭Construct and compare linear, quadratic, and exponential models and solve‬
‭& Exponential‬ ‭problems.‬
‭Models‬ ‭a.  For exponential models, express as a logarithm‬‭the solution to abct = d where a, c, and‬

‭d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.‬
‭(F-LE.4)‬

‭HS.M.3F.8TF‬ ‭Trigonometric‬ ‭Extend the domain of trigonometric functions using the unit circle.‬
‭Functions‬ ‭a.‬ ‭Understand radian measure of an angle‬‭as the length of the arc on the unit circle‬

‭subtended by the angle. (F-TF.1)‬

‭b.‬ ‭Explain how the unit circle in the coordinate plane enables the extension of‬
‭trigonometric functions to all real numbers, interpreted as radian measures of angles‬
‭traversed counterclockwise around the unit circle. (F-TF.2)‬

‭HS.M.3F.9TF‬ ‭Trigonometric‬ ‭Model periodic phenomena with trigonometric functions.‬
‭Functions‬ ‭a.‬ ‭Choose trigonometric functions to model‬‭periodic phenomena from a variety of‬

‭contexts (e.g., science, history, and culture, including those of the Montana American‬
‭Indian) with specified amplitude, frequency, and midline. (F-TF.5)‬



‭HS.M.3F.10TF‬ ‭Trigonometric‬ ‭Prove and apply trigonometric identities.‬
‭Functions‬ ‭a.‬ ‭Prove the Pythagorean identity sin2‬‭(θ) + cos2 (θ) = 1 and use it to calculate‬

‭trigonometric ratios. (F-TF.8)‬

‭STANDARD 4:  MODELING‬
‭MODELING links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of‬
‭choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve‬
‭decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using‬
‭mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring‬
‭consequences, and comparing predictions with data.‬

‭A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to‬
‭describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a‬
‭three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a‬
‭delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from‬
‭the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing‬
‭such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as‬
‭well as creativity.‬

‭In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are‬
‭a familiar descriptive model—for example, graphs of global temperature and atmospheric CO2 over time. Analytic modeling seeks to‬
‭explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth‬
‭of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate.‬
‭Functions are an important tool for analyzing such problems.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4M.1‬ ‭Complete the basic modeling cycle.‬
‭a.‬ ‭Identify variables in the situation and selecting those that represent essential features.‬
‭b.‬ ‭Formulate a model by creating and selecting geometric, graphical, tabular, algebraic,‬

‭or statistical representations that describe relationships between the variables.‬
‭c.‬ ‭Analyze and perform operations on these relationships to draw conclusions.‬



‭d.‬ ‭Interpret the results of the mathematics in terms of the original situation.‬
‭e.‬ ‭Validate the conclusions by comparing them with the situation and then either‬

‭improving the model or determining if it is acceptable.‬
‭f.‬ ‭Report on the conclusions and the reasoning behind the model including the choices,‬

‭assumptions, and approximations that are present throughout this cycle.‬

‭STANDARD 5:  GEOMETRY‬
‭This standard covers GEOMETRY principles such as congruence, similarity, right triangles and trigonometry, as well as circles.‬
‭Students also study expressing geometric properties with equations using geometric measurement and dimension, as well as‬
‭connections to equations through modeling.  Students begin to formalize their geometry experiences from elementary and middle‬
‭school, using more precise definitions and developing careful proofs.‬

‭The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation.‬
‭Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to‬
‭preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of symmetry,‬
‭and the symmetries of an object offer insight into its attributes.‬

‭For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. Once these‬
‭triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about‬
‭triangles, quadrilaterals, and other geometric figures. Similarity transformations (rigid motions followed by dilations) define similarity‬
‭in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor"‬
‭developed in the middle grades.‬

‭The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean‬
‭Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right‬
‭triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where‬
‭three pieces of information suffice to completely solve a triangle.‬

‭Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number‬
‭line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two‬



‭dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to‬
‭geometry and vice versa. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric‬
‭understanding, modeling, and proof.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭No standards in the Geometry domain.‬

‭STANDARD 6:  STATISTICS & PROBABILITY‬

‭The content covered in this standard include interpreting categorical and quant5itative data, making inferences and justifying‬
‭conclusions, conditional probability and the rules of probability, as well as using probability to make decisions.‬

‭Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always‬
‭sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for‬
‭making informed decisions that take it into account.‬

‭Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative‬
‭data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be‬
‭described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or‬
‭median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared‬
‭numerically using these statistics or compared visually using plots.‬

‭Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population‬
‭makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning‬
‭individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome‬



‭is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions‬
‭under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public‬
‭media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as‬
‭the data summaries and the conclusions drawn.‬

‭Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the‬
‭sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it‬
‭might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and‬
‭combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting‬
‭these probabilities relies on an understanding of independence and conditional probability, which can be approached through the‬
‭analysis of two-way tables.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.6SP.1ID‬ ‭Interpreting‬ ‭Summarize, represent, and interpret data on a single count or measurement‬
‭Categorical &‬ ‭variable.‬
‭Quantitative Data‬ ‭a.‬ ‭Use the mean and standard deviation‬‭of a data set to fit it to a normal distribution and‬

‭to estimate population percentages. Recognize that there are data sets for which such a‬
‭procedure is not appropriate. Use calculators, spreadsheets, tables, and Montana‬
‭American Indian data sources to estimate areas under the normal curve. (S-ID.4)‬

‭HS.M.6SP.4IC‬ ‭Making Inferences‬ ‭Understand and evaluate random processes underlying statistical experiments.‬
‭& Justifying‬ ‭a.‬ ‭Understand statistics as a process‬‭for making inferences about population parameters‬
‭Conclusions‬ ‭based on a random sample from that population.‬‭(S-IC.1)‬

‭b.‬ ‭Decide if a specified model is consistent with results from a given data-generating‬
‭process, e.g., using simulation. For example, a model says a spinning coin falls heads‬



‭up with probability 0.5. Would a result of 5 tails in a row cause you to question the‬
‭model? (S-IC.2)‬

‭HS.M.6SP.5IC‬ ‭Making Inferences‬ ‭Make inferences and justify conclusions from sample surveys, experiments, and‬
‭& Justifying‬ ‭observational studies.‬
‭Conclusions‬ ‭a.‬ ‭Recognize the purposes of and differences‬‭among sample surveys, experiments, and‬

‭observational studies; explain how randomization relates to each. (S-IC.3)‬

‭b.‬ ‭Use data from a sample survey to estimate a population mean or proportion; develop a‬
‭margin of error through the use of simulation models for random sampling. (S-IC.4)‬

‭c.‬ ‭Use data from a randomized experiment to compare two treatments; use simulations‬
‭to decide if differences between parameters are significant. (S-IC.5)‬

‭d.‬ ‭Evaluate reports based on data. (S-IC.6)‬

‭HS.M.6SP.9MD‬ ‭Probability to‬ ‭Use probability to evaluate outcomes of decisions.‬
‭Make Decisions‬ ‭a.‬ ‭Use probabilities to make fair‬‭decisions (e.g., drawing by lots, using a random number‬

‭generator). (S-MD.6)‬

‭c.‬ ‭Analyze decisions and strategies using probability concepts (e.g., product testing,‬
‭medical testing, pulling a hockey goalie at the end of a game). (S-MD.7)‬



‭HIGH SCHOOL MATH‬
‭GEOMETRY‬

‭9-11‬

‭STANDARD 1:  NUMBER & QUANTITY‬
‭The NUMBER & QUANTITY standard is comprised of the real number system, quantities, the complex number system and vector‬
‭and matrix quantities.  Students will be exposed to yet another extension of‬‭number‬‭, when the real numbers‬‭are augmented by the‬
‭imaginary numbers to form the complex numbers. With each extension of number, the meanings of addition, subtraction,‬
‭multiplication, and division are extended. In each new number system— integers, rational numbers, real numbers, and complex‬
‭numbers—the four operations stay the same in two important ways: They have the commutative, associative, and distributive‬
‭properties and their new meanings are consistent with their previous meanings.‬

‭In real world problems, the answers are usually not numbers but‬‭quantities‬‭:  numbers with units, which‬‭involves measurement.‬
‭Students encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as‬
‭person-hours and heating degree days, social science rates such as per-capita income, and rates in everyday life such as points scored‬
‭per game or batting averages.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭No Standards in the Number and Quantity domain.‬



‭STANDARD 2:  ALGEBRA‬
‭The ALGEBRA standard is comprised of expressions, equations and inequalities, and connections to functions and modeling.  An‬
‭expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at‬
‭more advanced levels, the operation of evaluating a function. Conventions about the use of parentheses and the order of operations‬
‭assure that each expression is unambiguous. Creating an expression that describes a computation involving a general quantity requires‬
‭the ability to express the computation in general terms, abstracting from specific instances.‬

‭An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the‬
‭expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values‬
‭of the variables; identities are often developed by rewriting an expression in an equivalent form.  The solutions of an equation in one‬
‭variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be‬
‭plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy‬
‭every equation and inequality in the system.‬

‭Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same‬
‭value for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation.‬
‭Converting a verbal description to an equation, inequality, or system of these is an essential skill in modeling.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭No standards in the Algebra domain.‬



‭STANDARD 3:  FUNCTIONS‬
‭The FUNCTIONS standard is comprised of interpreting and building functions.  It also covers their connections to expressions,‬
‭equations, modeling and coordinates through linear, quadratic, and exponential models, as well as, trigonometric functions. Functions‬
‭describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage‬
‭rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies‬
‭between quantities in nature and society, functions are important tools in the construction of mathematical models.‬

‭FUNCTIONS usually have numerical inputs and outputs and are often defined by an algebraic expression. The set of inputs to a‬
‭function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for‬
‭which the function makes sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a‬
‭seismograph); by a verbal rule, as in, “I’ll give you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx;‬
‭or by a recursive rule. Two important families of functions characterized by laws of growth are linear functions, which grow at a‬
‭constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe‬
‭proportional relationships.‬

‭Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves‬
‭solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions‬
‭can be visualized from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently‬
‭used in modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or‬
‭other technology.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬



‭No standards in Functions domain.‬

‭STANDARD 4:  MODELING‬
‭MODELING links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of‬
‭choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve‬
‭decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using‬
‭mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring‬
‭consequences, and comparing predictions with data.‬

‭A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to‬
‭describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a‬
‭three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a‬
‭delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from‬
‭the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing‬
‭such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as‬
‭well as creativity.‬

‭In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are‬
‭a familiar descriptive model—for example, graphs of global temperature and atmospheric CO2 over time. Analytic modeling seeks to‬



‭explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth‬
‭of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate.‬
‭Functions are an important tool for analyzing such problems.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4M.1‬ ‭Complete the basic modeling cycle.‬
‭a.‬ ‭Identify variables in the situation and selecting those that represent essential features.‬
‭b.‬ ‭Formulate a model by creating and selecting geometric, graphical, tabular, algebraic,‬

‭or statistical representations that describe relationships between the variables.‬
‭c.‬ ‭Analyze and perform operations on these relationships to draw conclusions.‬
‭d.‬ ‭Interpret the results of the mathematics in terms of the original situation.‬
‭e.‬ ‭Validate the conclusions by comparing them with the situation and then either‬

‭improving the model or determining if it is acceptable.‬
‭f.‬ ‭Report on the conclusions and the reasoning behind the model including the choices,‬

‭assumptions, and approximations that are present throughout this cycle.‬

‭STANDARD 5:  GEOMETRY‬
‭This standard covers GEOMETRY principles such as congruence, similarity, right triangles and trigonometry, as well as circles.‬
‭Students also study expressing geometric properties with equations using geometric measurement and dimension, as well as‬
‭connections to equations through modeling.  Students begin to formalize their geometry experiences from elementary and middle‬
‭school, using more precise definitions and developing careful proofs.‬

‭The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation.‬
‭Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to‬
‭preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of symmetry,‬
‭and the symmetries of an object offer insight into its attributes.‬



‭For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. Once these‬
‭triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about‬
‭triangles, quadrilaterals, and other geometric figures. Similarity transformations (rigid motions followed by dilations) define similarity‬
‭in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor"‬
‭developed in the middle grades.‬

‭The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean‬
‭Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right‬
‭triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where‬
‭three pieces of information suffice to completely solve a triangle.‬

‭Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number‬
‭line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two‬
‭dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to‬
‭geometry and vice versa. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric‬
‭understanding, modeling, and proof.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4G.1CO‬ ‭Congruence‬ ‭Experiment with transformations in the plane.‬
‭a.‬ ‭Know precise definitions of angle, circle, perpendicular line, parallel line, and line‬

‭segment, based on the undefined notions of point, line, distance along a line, and‬



‭distance around a circular arc. (G-CO.1)‬

‭b.‬ ‭Represent transformations in the plane using, e.g., transparencies and geometry‬
‭software; describe transformations as functions that take points in the plane as inputs‬
‭and give other points as outputs. Compare transformations that preserve distance and‬
‭angle to those that do not (e.g., translation versus horizontal stretch). (G-CO.2)‬

‭c.‬ ‭Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations‬
‭and reflections that carry it onto itself. (GCO.3)‬

‭d.‬ ‭Develop definitions of rotations, reflections, and translations in terms of angles,‬
‭circles, perpendicular lines, parallel lines, and line segments. (G-CO.4)‬

‭e.‬ ‭Given a geometric figure and a rotation, reflection, or translation, draw the‬
‭transformed figure using, e.g., graph paper, tracing paper, or geometry software.‬
‭Specify a sequence of transformations that will carry a given figure onto another.‬
‭(G-CO.5)‬

‭HS.M.4G.2CO‬ ‭Congruence‬ ‭Understand congruence in terms of rigid motions.‬
‭a.‬ ‭Use geometric descriptions of rigid motions to transform figures and to predict the‬

‭effect of a given rigid motion on a given figure; given two figures, use the definition‬
‭of congruence in terms of rigid motions to decide if they are congruent. (G-CO.6)‬

‭b.‬ ‭Use the definition of congruence in terms of rigid motions to show that two triangles‬
‭are congruent if and only if corresponding pairs of sides and corresponding pairs of‬
‭angles are congruent. (G-CO.7)‬

‭c.‬ ‭Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from‬
‭the definition of congruence in terms of rigid motions. (G-CO.8)‬



‭HS.M.4G.3CO‬ ‭Congruence‬ ‭Prove geometric theorems.‬
‭a.‬ ‭Prove theorems about lines and angles. Theorems include: vertical angles are‬

‭congruent; when a transversal crosses parallel lines, alternate interior angles are‬
‭congruent and corresponding angles are congruent; points on a perpendicular bisector‬
‭of a line segment are exactly those equidistant from the segment's endpoints.‬
‭(G-CO.9)‬

‭b.‬ ‭Prove theorems about triangles. Theorems include: measures of interior angles of a‬
‭triangle sum to 180°; base angles of isosceles triangles are congruent; the segment‬
‭joining midpoints of two sides of a triangle is parallel to the third side and half the‬
‭length; the medians of a triangle meet at a point. (G-CO.10)‬

‭c.‬ ‭Prove theorems about parallelograms. Theorems include: opposite sides are‬
‭congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each‬
‭other, and conversely, rectangles are parallelograms with congruent diagonals.‬
‭(G-CO.11)‬

‭HS.M.4G.4CO‬ ‭Congruence‬ ‭Make geometric constructions.‬
‭a.‬ ‭Make formal geometric constructions, including those representing Montana‬

‭American Indians, with a variety of tools and methods (compass and straightedge,‬
‭string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a‬
‭segment; copying an angle; bisecting a segment; bisecting an angle; constructing‬
‭perpendicular lines, including the perpendicular bisector of a line segment; and‬
‭constructing a line parallel to a given line through a point not on the line. (G-CO.12)‬

‭b.‬ ‭Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.‬
‭(G-CO.13)‬

‭HS.M.4G.5SRT‬ ‭Similarity‬ ‭Understand similarity in terms of similarity transformations.‬
‭Right Triangles‬ ‭a.‬ ‭Verify experimentally the properties‬‭of dilations given by a center and a scale factor:‬
‭& Trigonometry‬ ‭(G-SRT.1)‬



‭i.‬ ‭A dilation takes a line not passing through the center of the dilation to a parallel‬
‭line, and leaves a line passing through the center unchanged.‬

‭ii.‬ ‭The dilation of a line segment is longer or shorter in the ratio given by the scale‬
‭factor.‬

‭b.   Given two figures, use the definition of similarity in terms of similarity‬
‭transformations to decide if they are similar; explain using similarity transformations‬
‭the meaning of similarity for triangles as the equality of all corresponding pairs of‬
‭angles and the proportionality of all corresponding pairs of sides. (G-SRT.2)‬

‭a.‬ ‭Use the properties of similarity transformations to establish the AA criterion for two‬
‭triangles to be similar. (G-SRT.3)‬

‭HS.M.4G.6SRT‬ ‭Similarity‬ ‭Prove theorems involving similarity.‬
‭Right Triangles‬ ‭a.‬ ‭Prove theorems about triangles.‬‭Theorems include: a line parallel to one side of a‬
‭& Trigonometry‬ ‭triangle divides the other two proportionally,‬‭and conversely; the Pythagorean‬

‭Theorem proved using triangle similarity. (G-SRT.4)‬

‭b.‬ ‭Use congruence and similarity criteria for triangles to solve problems and to prove‬
‭relationships in geometric figures. (G-SRT.5)‬

‭HS.M.4G.7SRT‬ ‭Similarity‬ ‭Define trigonometric ratios and solve problems involving right triangles.‬
‭Right Triangles‬ ‭a.‬ ‭Understand that by similarity,‬‭side ratios in right triangles are properties of the angles‬
‭& Trigonometry‬ ‭in the triangle, leading to definitions‬‭of trigonometric ratios for acute angles.‬

‭(G-SRT.6)‬

‭b.‬ ‭Explain and use the relationship between the sine and cosine of complementary‬
‭angles. (G-SRT.7)‬



‭c.‬ ‭Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in‬
‭applied problems. (G-SRT.8)‬

‭HS.M.4G.8SRT‬ ‭Similarity‬ ‭Apply trigonometry to general triangles.‬
‭Right Triangles‬ ‭a.‬ ‭Derive the formula A = 1/2 ab‬‭sin(C) for the area of a triangle by drawing an‬
‭& Trigonometry‬ ‭auxiliary line from a vertex perpendicular‬‭to the opposite side. (G-SRT.9)‬

‭b.‬ ‭Prove the Laws of Sines and Cosines and use them to solve problems. (G-SRT.10)‬

‭c.‬ ‭Understand and apply the Laws of Sines and Cosines to find unknown measurements‬
‭in right and non-right triangles (e.g., surveying problems, resultant forces).‬
‭(G-SRT.11)‬

‭HS.M.4G.9C‬ ‭Circles‬ ‭Understand and apply theorems about circles.‬
‭a.‬ ‭Prove that all circles are similar. (G-C.1)‬

‭b.‬ ‭Identify and describe relationships among inscribed angles, radii, and chords. Include‬
‭the relationship between central, inscribed, and circumscribed angles; inscribed angles‬
‭on a diameter are right angles; the radius of a circle is perpendicular to the tangent‬
‭where the radius intersects the circle. (G-C.2)‬

‭c.‬ ‭Construct the inscribed and circumscribed circles of a triangle, and prove properties of‬
‭angles for a quadrilateral inscribed in a circle. (G-C.3)‬

‭d.‬ ‭Construct a tangent line from a point outside a given circle to the circle. (G-C.4)‬

‭HS.M.4G.10C‬ ‭Circles‬ ‭Find arc lengths and area of sectors of circles.‬
‭a.‬ ‭Derive using similarity, the fact that the length of the arc intercepted by an angle is‬

‭proportional to the radius, and define the radian measure of the angle as the constant‬
‭of proportionality; derive the formula for the area of a sector. (G-C.5)‬

‭HS.M.4G.11GPE‬ ‭Geometric‬ ‭Translate between the geometric description and the equation for a conic section.‬



‭Properties with‬ ‭a.‬ ‭Derive the equation of a circle of given center and radius using the Pythagorean‬
‭Equations‬ ‭Theorem; complete the square to find‬‭the center and radius of a circle given by an‬

‭equation. (G-GPE.1)‬

‭b.‬ ‭Derive the equation of a parabola given a focus and directrix. (G-GPE.2)‬

‭HS.M.4G.12GPE‬ ‭Geometric‬ ‭Use coordinates to prove simple geometric theorems algebraically‬‭.‬
‭Properties with‬ ‭a.‬ ‭Use coordinates to prove simple‬‭geometric theorems algebraically.  For‬
‭Equations‬ ‭example, prove or disprove that a figure‬‭defined by four given points in the coordinate‬

‭plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered‬
‭at the origin and containing the point (0, 2). (G-GPE.4)‬

‭b.‬ ‭Prove the slope criteria for parallel and perpendicular lines and use them to solve‬
‭geometric problems (e.g., find the equation of a line parallel or perpendicular to a‬
‭given line that passes through a given point). (G-GPE.5)‬

‭c.‬ ‭Find the point on a directed line segment between two given points that partitions the‬
‭segment in a given ratio. (G-GPE.6)‬

‭d.‬ ‭Use coordinates to compute perimeters of polygons and areas of triangles and‬
‭rectangles, e.g., using the distance formula. (GGPE.7)‬

‭HS.M.4G.13GMD‬ ‭Geometric‬ ‭Explain volume formulas and use them to solve problems.‬
‭Measurement &‬ ‭a.   Give an informal argument for‬‭the formulas for the circumference of a circle, area of‬
‭Dimension‬ ‭a circle, volume of a cylinder, pyramid,‬‭and cone. Use dissection arguments,‬

‭Cavalieri's principle, and informal limit arguments. (G-GMD.1)‬

‭c.‬ ‭Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.‬
‭(G-GMD.3)‬

‭HS.M.4G.14GMD‬ ‭Geometric‬ ‭Visualize relationships between two-dimensional and three-dimensional objects.‬



‭Measurement &‬ ‭a.   Identify the shapes of two-dimensional cross-sections of three-dimensional objects,‬
‭Dimension‬ ‭and identify three-dimensional objects‬‭generated by rotations of two-dimensional‬

‭objects.  (G-GMD.4)‬

‭HS.M.4G.15MG‬ ‭Modeling with‬ ‭Apply geometric concepts in modeling situations.‬
‭Geometry‬ ‭a.   Use geometric shapes, their measures,‬‭and their properties to describe objects (e.g.,‬

‭modeling a tree trunk or a human torso as a cylinder; modeling a Montana American‬
‭Indian tipi as a cone). (G-MG.1)‬

‭b.‬ ‭Apply concepts of density based on area and volume in modeling situations (e.g.,‬
‭persons per square mile, BTUs per cubic foot). (G-MG.2)‬

‭c.‬ ‭Apply geometric methods to solve design problems (e.g., designing an object or‬
‭structure to satisfy physical constraints or minimize cost; working with typographic‬
‭grid systems based on ratios).‬ ‭(G-MG.3)‬

‭STANDARD 6:  STATISTICS & PROBABILITY‬
‭The content covered in this standard include interpreting categorical and quant5itative data, making inferences and justifying‬
‭conclusions, conditional probability and the rules of probability, as well as using probability to make decisions.‬

‭Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always‬
‭sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for‬
‭making informed decisions that take it into account.‬

‭Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative‬
‭data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be‬
‭described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or‬



‭median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared‬
‭numerically using these statistics or compared visually using plots.‬

‭Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population‬
‭makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning‬
‭individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome‬
‭is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions‬
‭under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public‬
‭media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as‬
‭the data summaries and the conclusions drawn.‬

‭Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the‬
‭sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it‬
‭might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and‬
‭combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting‬
‭these probabilities relies on an understanding of independence and conditional probability, which can be approached through the‬
‭analysis of two-way tables.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬



‭HS.M.6SP.6CP‬ ‭Conditional‬ ‭Understand independence and conditional probability and use them to interpret‬
‭Probability‬ ‭data.‬
‭& Rules of Prob.‬ ‭a.‬ ‭Describe events as subsets of‬‭a sample space (the set of outcomes) using‬

‭characteristics (or categories) of the outcomes, or as unions, intersections, or‬
‭complements of other events ("or," "and," "not"). (S-CP.1)‬

‭b.‬ ‭Understand that two events A and B are independent if the probability of A and B‬
‭occurring together is the product of their probabilities, and use this characterization to‬
‭determine if they are independent. (S-CP.2)‬

‭c.‬ ‭Understand the conditional probability of A given B as P(A and B)/P(B) and interpret‬
‭independence of A and B as saying that the conditional probability of A given B is the‬
‭same as the probability of A, and the conditional probability of B given A is the same‬
‭as the probability of B. (S-CP.3)‬

‭d.‬ ‭Construct and interpret two-way frequency tables of data, including information from‬
‭Montana American Indian data sources, when two categories are associated with each‬
‭object being classified. Use the two-way table as a sample space to decide if events‬
‭are independent and to approximate conditional probabilities. For example, collect‬
‭data from a random sample of students in your school on their favorite subject among‬
‭math, science, and English. Estimate the probability that a randomly selected student‬
‭from your school will favor science given that the student is in tenth grade. Do the‬
‭same for other subjects and compare the results. (S-CP.4)‬

‭e.‬ ‭Recognize and explain the concepts of conditional probability and independence in‬
‭everyday language and everyday situations. For example, compare the chance of‬
‭having lung cancer if you are a smoker with the chance of being a smoker if you have‬
‭lung cancer. (S-CP.5)‬



‭HS.M.6SP.7CP‬ ‭Conditional‬ ‭Use the rules of probability to compute probabilities of compound events in a‬
‭Probability‬ ‭uniform probability model.‬
‭& Rules of Prob.‬ ‭a.‬ ‭Find the conditional probability‬‭of A given B as the fraction of B's outcomes that also‬

‭belong to A, and interpret the answer in terms of the model. (S-CP.6)‬

‭b.‬ ‭Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the‬
‭answer in terms of the model. (S-CP.7)‬

‭c.‬ ‭Apply the general Multiplication Rule in a uniform probability model, P(A and B) =‬
‭P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. (S-CP.8)‬

‭d.‬ ‭Use permutations and combinations to compute probabilities of compound events and‬
‭solve problems. (S-CP.9)‬

‭HS.M.6SP.9MD‬ ‭Probability to‬ ‭Use probability to evaluate outcomes of decisions.‬
‭Make Decisions‬ ‭a.‬ ‭Use probabilities to make fair‬‭decisions (e.g., drawing by lots, using a random‬

‭number generator). (S-MD.6)‬

‭b.‬ ‭Analyze decisions and strategies using probability concepts (e.g., product testing,‬
‭medical testing, pulling a hockey goalie at the end of a game). (S-MD.7)‬



‭HS MATH‬
‭Pre-Calculus & Calculus‬

‭11-12‬

‭STANDARD 1:  NUMBER & QUANTITY‬
‭The NUMBER & QUANTITY standard is comprised of the real number system, quantities, the complex number system and vector‬
‭and matrix quantities.  Students will be exposed to yet another extension of‬‭number‬‭, when the real numbers‬‭are augmented by the‬
‭imaginary numbers to form the complex numbers. With each extension of number, the meanings of addition, subtraction,‬
‭multiplication, and division are extended. In each new number system— integers, rational numbers, real numbers, and complex‬
‭numbers—the four operations stay the same in two important ways: They have the commutative, associative, and distributive‬
‭properties and their new meanings are consistent with their previous meanings.‬

‭In real world problems, the answers are usually not numbers but‬‭quantities‬‭:  numbers with units, which‬‭involves measurement.‬
‭Students encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as‬
‭person-hours and heating degree days, social science rates such as per-capita income, and rates in everyday life such as points scored‬
‭per game or batting averages.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.1NQ.4.CN‬ ‭Complex Numbers‬ ‭Perform arithmetic operations with complex numbers‬‭.‬
‭a.‬ ‭Find the conjugate of a complex number; use conjugates to find moduli and quotients‬

‭of complex numbers. (N-CN.3)‬

‭HS.M.1NQ.5.CN‬ ‭Complex Numbers‬ ‭Represent complex numbers and their operations on the complex plane.‬
‭a.‬ ‭Represent complex numbers on the complex plane in rectangular and polar form‬

‭(including real and imaginary numbers), and explain why the rectangular and polar‬
‭forms of a given complex number represent the same number. (N-CN.4)‬



‭b.‬ ‭Represent addition, subtraction, multiplication, and conjugation of complex numbers‬
‭geometrically on the complex plane; use properties of this representation for‬
‭computation. For example, (-1 + √3 i) 3 = 8 because (-1 + √3 i) has modulus 2 and‬
‭argument 120°. (N-CN.5)‬

‭c.‬ ‭Calculate the distance between numbers in the complex plane as the modulus of the‬
‭difference and the midpoint of a segment as the average of the numbers at its‬
‭endpoints. (N-CN.6)‬

‭HS.M.1NQ.7.VM‬ ‭Vector & Matrix‬ ‭Represent and model with vector quantities.‬
‭Quantities‬ ‭a.  Recognize vector quantities as having‬‭both magnitude and direction. Represent vector‬

‭quantities by directed line segments, and use appropriate symbols for vectors and their‬
‭magnitudes (e.g., v, |v|, ||v||, v). (N-VM.1)‬

‭b.‬ ‭Find the components of a vector by subtracting the coordinates of an initial point‬
‭from the coordinates of a terminal point. (NVM.2)‬

‭c.‬ ‭Solve problems from a variety of contexts (e.g., science, history, and culture),‬
‭including those of Montana American Indians, involving velocity and other quantities‬
‭that can be represented by vectors. (N-VM.3)‬

‭HS.M.1NQ.8.VM‬ ‭Vector & Matrix‬ ‭Perform operations on‬‭vectors. (N-VM.4)‬
‭Quantities‬ ‭a.  Add and subtract vectors‬

‭i.‬ ‭Add vectors end-to-end, component-wise, and by the parallelogram rule.‬
‭Understand that the magnitude of a sum of two vectors is typically not the sum of‬
‭the magnitudes.‬

‭ii.‬ ‭Given two vectors in magnitude and direction form, determine the magnitude and‬
‭direction of their sum.‬

‭iii.‬ ‭Understand vector subtraction v – w as v + (–w) where –w is the additive inverse‬
‭of w, with the same magnitude as w and pointing in the opposite direction.‬
‭Represent vector subtraction graphically by connecting the tips in the appropriate‬



‭order, and perform vector subtraction component-wise.‬

‭b.  Multiply a vector by a scalar. (N-VM.5)‬
‭i.  Represent scalar multiplication graphically by scaling vectors and possibly‬

‭reversing their direction; perform scalar multiplication component-wise, e.g., as‬
‭c(vx, vy) = (cvx, cvy).‬

‭ii.‬‭Compute the magnitude of a scalar multiple cv using ||cv|| = |c|v and compute the‬
‭direction of cv knowing that when |c|v ≠ 0, the direction of cv is either along v (for‬
‭c > 0) or against v (for c < 0).‬

‭HS.M.1NQ.9.VM‬ ‭Vector & Matrix‬ ‭Perform operations on matrices and use matrices in applications.‬
‭Quantities‬ ‭a.  Use matrices to represent and manipulate‬‭data, e.g., to represent payoffs or incidence‬

‭relationships in a network. (N-VM.6)‬

‭b.  Multiply matrices by scalars to produce new‬‭matrices, e.g., as when all of the payoffs‬
‭in a game are doubled. (N-VM.7)‬

‭c.  Add, subtract, and multiply matrices of appropriate dimensions. (N-VM.8)‬

‭d.  Understand that, unlike multiplication of numbers, matrix multiplication for square‬
‭matrices is not a commutative operation, but still satisfies the associative and‬
‭distributive properties. (N-VM.9)‬

‭e.   Understand that the zero and identity matrices play a role in matrix addition and‬
‭multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a‬
‭square matrix is nonzero if and only if the matrix has a multiplicative inverse.‬
‭(N-VM.10)‬

‭f.    Multiply a vector (regarded as a matrix with one column) by a matrix of suitable‬
‭dimensions to produce another vector. Work with matrices as transformations of‬
‭vectors. (N-VM.11)‬



‭g.  Work with 2 × 2 matrices as transformations of the plane, and interpret the absolute‬
‭value of the determinant in terms of area. (N-VM.12)‬

‭STANDARD 2:  ALGEBRA‬
‭The ALGEBRA standard is comprised of expressions, equations and inequalities, and connections to functions and modeling.  An‬
‭expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at‬
‭more advanced levels, the operation of evaluating a function. Conventions about the use of parentheses and the order of operations‬
‭assure that each expression is unambiguous. Creating an expression that describes a computation involving a general quantity requires‬
‭the ability to express the computation in general terms, abstracting from specific instances.‬

‭An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the‬
‭expressions on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values‬
‭of the variables; identities are often developed by rewriting an expression in an equivalent form.  The solutions of an equation in one‬
‭variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be‬
‭plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy‬
‭every equation and inequality in the system.‬

‭Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same‬
‭value for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation.‬
‭Converting a verbal description to an equation, inequality, or system of these is an essential skill in modeling.‬



‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.2A.1.SSE‬ ‭Seeing Structure‬ ‭Interpret the structure‬‭of expressions.‬‭(A-SSE.1)‬
‭In Expressions‬ ‭a.  Interpret expressions that represent‬‭a quantity in terms of its context.‬

‭i.‬ ‭Interpret parts of an expression, such as terms, factors, and coefficients.‬
‭ii.‬ ‭Interpret complicated expressions by viewing one or more of their parts as a single‬

‭entity. For example, interpret P(1+r)n as the product of P and a factor not‬
‭depending on P.‬

‭b.‬ ‭Use the structure of an expression to identify ways to rewrite it. For example, see x4 –‬
‭y4 as (x2 ) 2 – (y2 ) 2 , thus recognizing it as a difference of squares that can be‬
‭factored as (x2 – y2 )(x2 + y2 ). (A-SSE.2)‬

‭HS.M.2A.2.SSE‬ ‭Seeing Structure‬ ‭Write expressions in equivalent forms to solve problems.‬
‭In Expressions‬ ‭a.‬ ‭Derive the formula for the sum‬‭of a finite geometric series (when the common ratio is‬

‭not 1), and use the formula to solve problems. For example, calculate mortgage‬
‭payments. (A-SSE.4)‬

‭HS.M.2A.3.APR‬ ‭Arithmetic with‬ ‭Perform arithmetic operations on polynomials‬‭.‬
‭Polynomials and‬ ‭a.   Understand that polynomials‬‭form a system analogous to the integers, namely, they‬
‭Rational Expressions‬ ‭are closed under the operations‬‭of addition, subtraction, and multiplication; add,‬

‭subtract, and multiply polynomials. (A-APR.1)‬

‭HS.M.2A.4.APR‬ ‭Arithmetic with‬ ‭Understand the relationship between zeros and factors of polynomials.‬
‭Polynomials and‬ ‭a.‬ ‭Know and apply the Remainder‬‭Theorem: For a polynomial p(x) and a number a, the‬
‭Rational Expressions‬ ‭remainder on division by x –‬‭a is p(a), so p(a) = 0 if and only if (x – a) is a factor of‬

‭p(x). (A-APR.2)‬



‭b.‬ ‭Identify zeros of polynomials when suitable factorizations are available, and use the‬
‭zeros to construct a rough graph of the function defined by the polynomial. (A-APR.3)‬

‭HS.M.2A.5.APR‬ ‭Arithmetic with‬ ‭Use polynomial identities to solve problems.‬
‭Polynomials and‬ ‭a.‬ ‭Prove polynomial identities and‬‭use them to describe numerical relationships. For‬
‭Rational Expressions‬ ‭example, the polynomial identity‬‭(x2 + y2 ) 2 = (x2 – y2 ) 2 + (2xy) 2 can be used to‬

‭generate Pythagorean triples. (A-APR.4)‬

‭b.‬ ‭Know and apply the Binomial Theorem for the expansion of (x + y) n in powers of x‬
‭and y for a positive integer n, where x and y are any numbers, with coefficients‬
‭determined for example by Pascal's Triangle. [The Binomial Theorem can be proved‬
‭by mathematical induction or by a combinatorial argument.] (A-APR.5)‬

‭HS.M.2A.6.APR‬ ‭Arithmetic with‬ ‭Rewrite rational expressions.‬
‭Polynomials and‬ ‭a.‬ ‭Rewrite simple rational expressions‬‭in different forms; write a(x) /b(x) in the form‬
‭Rational Expressions‬ ‭q(x) + r(x) /b(x), where a(x),‬‭b(x), q(x), and r(x) are polynomials with the degree of‬

‭r(x) less than the degree of b(x), using inspection, long division, or, for the more‬
‭complicated examples, a computer algebra system. (A-APR.6)‬

‭b.‬ ‭Understand that rational expressions form a system analogous to the rational numbers,‬
‭closed under addition, subtraction, multiplication, and division by a nonzero rational‬
‭expression; add, subtract, multiply, and divide rational expressions. (A-APR.7)‬

‭HS.M.2A.7.CED‬ ‭Creating Equations‬ ‭Create equations that describe numbers or relationships.‬
‭a.‬ ‭Create equations and inequalities in one variable and use them to solve problems from‬

‭a variety of contexts (e.g., science, history, and culture), including those of Montana‬
‭American Indians. Include equations arising from linear and quadratic functions, and‬
‭simple rational and exponential functions. (A-CED.1)‬



‭b.‬ ‭Create equations in two or more variables to represent relationships between‬
‭quantities; graph equations on coordinate axes with labels and scales. (A-CED.2)‬

‭c.‬ ‭Represent constraints by equations or inequalities and by systems of equations and/or‬
‭inequalities, and interpret solutions as viable or nonviable options in a modeling‬
‭context. For example, represent inequalities describing nutritional and cost constraints‬
‭on combinations of different foods. (A-CED.3)‬

‭d.‬ ‭Rearrange formulas to highlight a quantity of interest using the same reasoning as in‬
‭solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.‬
‭(A-CED.4)‬

‭HS.M.2A.10.REI‬ ‭Reasoning with‬ ‭Solve systems of equations.‬
‭Equations and‬ ‭a.‬ ‭Represent a system of linear equations‬‭as a single matrix equation in a vector‬
‭Inequalities‬ ‭variable. (A-REI.8)‬

‭b.‬ ‭Find the inverse of a matrix if it exists and use it to solve systems of linear equations‬
‭(using technology for matrices of dimension 3 × 3 or greater). (A-REI.9)‬

‭STANDARD 3:  FUNCTIONS‬



‭The FUNCTIONS standard is comprised of interpreting and building functions.  It also covers their connections to expressions,‬
‭equations, modeling and coordinates through linear, quadratic, and exponential models, as well as, trigonometric functions. Functions‬
‭describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage‬
‭rate of 4.25% is a function of the length of time the money is invested. Because we continually make theories about dependencies‬
‭between quantities in nature and society, functions are important tools in the construction of mathematical models.‬

‭FUNCTIONS usually have numerical inputs and outputs and are often defined by an algebraic expression. The set of inputs to a‬
‭function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for‬
‭which the function makes sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a‬
‭seismograph); by a verbal rule, as in, “I’ll give you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx;‬
‭or by a recursive rule. Two important families of functions characterized by laws of growth are linear functions, which grow at a‬
‭constant rate, and exponential functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe‬
‭proportional relationships.‬

‭Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves‬
‭solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions‬
‭can be visualized from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently‬
‭used in modeling. Sometimes functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or‬
‭other technology.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.3F.3IF‬ ‭Interpreting‬ ‭Analyze functions using different representations.‬
‭Functions‬ ‭a.‬ ‭Graph functions expressed symbolically‬‭and show key features of the graph, by hand‬

‭in simple cases and using technology for more complicated cases. (F-IF.7)‬
‭i.‬ ‭Graph rational functions, identifying zeros and asymptotes when suitable‬

‭factorizations are available, and showing end behavior.‬
‭b.‬ ‭Write a function defined by an expression in different but equivalent forms to reveal‬

‭and explain different properties of the function.  (F-IF.8)‬
‭i.‬ ‭Use the process of factoring and completing the square in a quadratic function to‬

‭show zeros, extreme values, and symmetry of the graph, and interpret these in‬
‭terms of a context.‬



‭ii.‬ ‭Use the properties of exponents to interpret expressions for exponential functions.‬
‭For example, identify percent rate of change in functions such as y = (1.02)t , y =‬
‭(0.97)t , y = (1.01)12t, y = (1.2)t/10 , and classify them as representing exponential‬
‭growth or decay.‬

‭HS.M.3F.4BF‬ ‭Building Functions‬ ‭Build a function that models a relationship between two quantities.‬
‭a.‬ ‭Write a function that describes a relationship between two quantities. (F-BF.1)‬

‭i.‬ ‭Compose functions. For example, if T(y) is the temperature in the atmosphere as‬
‭a function of height, and h(t) is the height of a weather balloon as a function of‬
‭time, then T(h(t)) is the temperature at the location of the weather balloon as a‬
‭function of time.‬

‭HS.M.3F.5BF‬ ‭Building Functions‬ ‭Build new functions form existing functions.‬
‭a.‬ ‭Find inverse functions. (F-BF.4)‬

‭i.‬ ‭Verify by composition that one function is the inverse of another.‬
‭ii.‬ ‭Read values of an inverse function from a graph or a table, given that the function‬

‭has an inverse.‬
‭iii.‬ ‭Produce an invertible function from a non-invertible function by restricting the‬

‭domain.‬

‭b.‬ ‭Understand the inverse relationship between exponents and logarithms and use this‬
‭relationship to solve problems involving logarithms and exponents. (F-BF.5)‬

‭HS.M.3F.8TF‬ ‭Trigonometric‬ ‭Extend the domain of trigonometric functions using the unit circle.‬
‭Functions‬ ‭a.‬ ‭Use special triangles to determine geometrically‬‭the values of sine, cosine, tangent for‬

‭π/3, π/4 and π/6 and use the unit circle to express the values of sine, cosines, and‬
‭tangent for x, π + x, and 2π – x in terms of their values for x, where x is any real‬
‭number. (FTF.3)‬

‭b.‬ ‭Use the unit circle to explain symmetry (odd and even) and periodicity of‬
‭trigonometric functions. (F-TF.4)‬

‭HS.M.3F.9TF‬ ‭Trigonometric‬ ‭Model periodic phenomena with trigonometric functions.‬



‭Functions‬ ‭a.‬ ‭Understand that restricting a trigonometric function to a domain on which it is always‬
‭increasing or always decreasing allows its inverse to be constructed. (F-TF.6)‬

‭b.‬ ‭Use inverse functions to solve trigonometric equations that arise in modeling contexts;‬
‭evaluate the solutions using technology; and interpret them in terms of the context.‬
‭(T-TF.7)‬

‭HS.M.3F.10TF‬ ‭Trigonometric‬ ‭Prove and apply trigonometric identities.‬
‭Functions‬ ‭a.‬ ‭Prove the addition and subtraction formulas‬‭for sine, cosine, and tangent and use them‬

‭to solve problems. (F-TF.9)‬

‭STANDARD 4:  MODELING‬
‭MODELING links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of‬
‭choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve‬
‭decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using‬
‭mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring‬
‭consequences, and comparing predictions with data.‬

‭A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to‬
‭describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a‬
‭three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a‬
‭delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from‬
‭the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing‬
‭such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as‬
‭well as creativity.‬

‭In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are‬
‭a familiar descriptive model—for example, graphs of global temperature and atmospheric CO2 over time. Analytic modeling seeks to‬
‭explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth‬
‭of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate.‬
‭Functions are an important tool for analyzing such problems.‬



‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4M.1‬ ‭Complete the basic modeling cycle.‬
‭a.‬ ‭Identify variables in the situation and selecting those that represent essential features.‬
‭b.‬ ‭Formulate a model by creating and selecting geometric, graphical, tabular, algebraic,‬

‭or statistical representations that describe relationships between the variables.‬
‭c.‬ ‭Analyze and perform operations on these relationships to draw conclusions.‬
‭d.‬ ‭Interpret the results of the mathematics in terms of the original situation.‬
‭e.‬ ‭Validate the conclusions by comparing them with the situation and then either‬

‭improving the model or determining if it is acceptable.‬
‭f.‬ ‭Report on the conclusions and the reasoning behind the model including the choices,‬

‭assumptions, and approximations that are present throughout this cycle.‬

‭STANDARD 5:  GEOMETRY‬
‭This standard covers GEOMETRY principles such as congruence, similarity, right triangles and trigonometry, as well as circles.‬
‭Students also study expressing geometric properties with equations using geometric measurement and dimension, as well as‬
‭connections to equations through modeling.  Students begin to formalize their geometry experiences from elementary and middle‬
‭school, using more precise definitions and developing careful proofs.‬

‭The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation.‬
‭Fundamental are the rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to‬
‭preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of symmetry,‬
‭and the symmetries of an object offer insight into its attributes.‬

‭For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. Once these‬
‭triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about‬
‭triangles, quadrilaterals, and other geometric figures. Similarity transformations (rigid motions followed by dilations) define similarity‬
‭in the same way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor"‬
‭developed in the middle grades.‬



‭The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean‬
‭Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right‬
‭triangles by the Law of Cosines. Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where‬
‭three pieces of information suffice to completely solve a triangle.‬

‭Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number‬
‭line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two‬
‭dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to‬
‭geometry and vice versa. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric‬
‭understanding, modeling, and proof.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4G.11GPE‬ ‭Geometric‬ ‭Translate between the geometric description and the equation for a conic section.‬
‭Properties with‬ ‭a.‬ ‭Derive the equations of ellipses‬‭and hyperbolas given the foci and directrices.‬
‭Equations‬ ‭(G-GPE.3)‬

‭HS.M.4G.13GMD‬ ‭Geometric‬ ‭Explain volume formulas and use them to solve problems.‬
‭Measurement &‬ ‭a.‬ ‭Give an informal argument using‬‭Cavalieri's principle for the formulas for the volume‬
‭Dimension‬ ‭of a sphere and other solid figures. (GGMD.2)‬

‭STANDARD 6:  STATISTICS & PROBABILITY‬
‭The content covered in this standard include interpreting categorical and quant5itative data, making inferences and justifying‬
‭conclusions, conditional probability and the rules of probability, as well as using probability to make decisions.‬

‭Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always‬
‭sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for‬
‭making informed decisions that take it into account.‬

‭Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative‬
‭data can be described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be‬
‭described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or‬



‭median) and a statistic measuring spread (such as standard deviation or interquartile range). Different distributions can be compared‬
‭numerically using these statistics or compared visually using plots.‬

‭Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population‬
‭makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning‬
‭individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome‬
‭is one that is unlikely to be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions‬
‭under which data are collected are important in drawing conclusions from the data; in critically reviewing uses of statistics in public‬
‭media and other reports, it is important to consider the study design, how the data were gathered, and the analyses employed as well as‬
‭the data summaries and the conclusions drawn.‬

‭Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the‬
‭sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it‬
‭might be reasonable to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and‬
‭combine to make up events; probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting‬
‭these probabilities relies on an understanding of independence and conditional probability, which can be approached through the‬
‭analysis of two-way tables.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.6SP.8MD‬ ‭Probability to‬ ‭Calculate expected values and use them to solve problems.‬



‭Make Decisions‬ ‭a.‬ ‭Define a random variable for a quantity of interest by assigning a numerical value to‬
‭each event in a sample space; graph the corresponding probability distribution using‬
‭the same graphical displays as for data distributions. (S-MD.1)‬

‭b.‬ ‭Calculate the expected value of a random variable; interpret it as the mean of the‬
‭probability distribution. (S-MD.2)‬

‭c.‬ ‭Develop a probability distribution for a random variable defined for a sample space in‬
‭which theoretical probabilities can be calculated; find the expected value. For‬
‭example, find the theoretical probability distribution for the number of correct‬
‭answers obtained by guessing on all five questions of a multiple-choice test where‬
‭each question has four choices, and find the expected grade under various grading‬
‭schemes. (S-MD.3)‬

‭d.‬ ‭Develop a probability distribution for a random variable defined for a sample space in‬
‭which probabilities are assigned empirically; find the expected value. For example,‬
‭find a current data distribution on the number of TV sets per household in the United‬
‭States, and calculate the expected number of sets per household. How many TV sets‬
‭would you expect to find in 100 randomly selected households? (S-MD.4)‬

‭HS.M.6SP.9MD‬ ‭Probability to‬ ‭Use probability to evaluate outcomes of decisions.‬
‭Make Decisions‬ ‭a.‬ ‭Weigh the possible outcomes of‬‭a decision by assigning probabilities to payoff values‬

‭and finding expected values.  (S-MD.5)‬
‭i.‬ ‭Find the expected payoff for a game of chance. For example, find the expected‬

‭winnings from a state lottery ticket or a game at a fast-food restaurant.‬
‭ii.‬ ‭Evaluate and compare strategies on the basis of expected values. For example,‬

‭compare a high-deductible versus a low-deductible automobile insurance policy‬
‭using various, but reasonable, chances of having a minor or a major accident.‬



‭HS MATH‬
‭TECHNICAL MATH‬

‭Grades 9-12‬

‭Mathematical Practices‬
‭The Standards for Mathematical Practice are essential in the extension of mathematical thinking. Students develop these habits of mind through‬
‭specific, intentional experiences of writing, reading, talking, and reasoning that connect mathematics to their daily lives and career situations. Even‬
‭though all of the Standards are important for all quality math courses, the following are highlighted in a technical mathematics course:‬

‭●‬ ‭Construct viable arguments and critique the reasoning of others (MP.3)‬
‭●‬ ‭Modeling with mathematics (MP.4)‬
‭●‬ ‭Attend to precision (MP.6)‬
‭●‬ ‭Look for and make use of structure (MP.7)‬

‭STANDARD 1:  NUMBER & QUANTITY‬

‭The NUMBER & QUANTITY standard is comprised of the real number system, quantities, the complex number system and vector and matrix‬
‭quantities.  Students will be exposed to yet another extension of‬‭number‬‭, when the real numbers are augmented‬‭by the imaginary numbers to form‬
‭the complex numbers. With each extension of number, the meanings of addition, subtraction, multiplication, and division are extended. In each new‬
‭number system— integers, rational numbers, real numbers, and complex numbers—the four operations stay the same in two important ways: They‬
‭have the commutative, associative, and distributive properties and their new meanings are consistent with their previous meanings.‬

‭In real world problems, the answers are usually not numbers but‬‭quantities‬‭:  numbers with units, which‬‭involves measurement.  Students‬
‭encounter a wider variety of units in modeling, e.g., acceleration, currency conversions, derived quantities such as person-hours and heating degree‬
‭days, social science rates such as per-capita income, and rates in everyday life such as points scored per game or batting averages.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.1NQ.3.Q‬ ‭Quantities‬ ‭Reason quantitatively and use units to solve problems.‬
‭1.‬ ‭Use units as a way to understand problems and to guide the solution of multi-step‬

‭problems; choose and interpret units consistently in formulas; choose and interpret the‬
‭scale and the origin in graphs and data displays.‬

‭2.‬ ‭Define appropriate quantities for the purpose of descriptive modeling.‬



‭3.‬ ‭Choose a level of accuracy appropriate to limitations on measurement when reporting‬
‭quantities.‬

‭STANDARD 2:  ALGEBRA‬

‭The ALGEBRA standard is comprised of expressions, equations and inequalities, and connections to functions and modeling.  An expression is a‬
‭record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at more advanced levels, the‬
‭operation of evaluating a function. Conventions about the use of parentheses and the order of operations assure that each expression is‬
‭unambiguous. Creating an expression that describes a computation involving a general quantity requires the ability to express the computation in‬
‭general terms, abstracting from specific instances.‬

‭An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the expressions‬
‭on either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values of the variables;‬
‭identities are often developed by rewriting an expression in an equivalent form.  The solutions of an equation in one variable form a set of numbers;‬
‭the solutions of an equation in two variables form a set of ordered pairs of numbers, which can be plotted in the coordinate plane. Two or more‬
‭equations and/or inequalities form a system. A solution for such a system must satisfy every equation and inequality in the system.‬

‭Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same value for the‬
‭same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation. Converting a verbal‬
‭description to an equation, inequality, or system of these is an essential skill in modeling.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.2A.2.SSE‬ ‭Seeing Structure‬ ‭Write expressions in equivalent forms to solve problems.‬
‭In Expressions‬ ‭a.‬ ‭Choose and produce an equivalent‬‭form of an expression to reveal and explain‬

‭properties of the quantity represented by the expression. (A-SSE.4)‬

‭HS.M.2A.7.CED‬ ‭Creating‬ ‭Create equations that describe numbers or relationships.‬
‭Equations‬ ‭a.   Create equations in two or more variables‬‭to represent relationships between‬

‭quantities; graph equations or coordinate axes with labels and scales. (A-CED.2)‬



‭b.‬ ‭Represent constraints by equations or inequalities, and by systems of equations and/or‬
‭inequalities, and interpret solutions as viable or nonviable options in a modeling‬
‭context.  (A-CED.3)‬

‭HS.M.2A.11.REI‬ ‭Reasoning with‬ ‭Represent and solve equations and inequalities graphically.‬
‭Equations and‬ ‭a.‬ ‭Explain why the x-coordinates of‬‭the points where the graphs of the equations y =‬
‭Inequalities‬ ‭f(x) and y = g(x) intersect are the‬‭solutions of the equation f(x) = g(x); find the‬

‭solutions approximately, e.g., using technology to graph the functions, make tables of‬
‭values, or find successive approximations.  (A-REI.11)‬

‭STANDARD 3:  FUNCTIONS‬
‭The FUNCTIONS standard is comprised of interpreting and building functions.  It also covers their connections to expressions, equations,‬
‭modeling and coordinates through linear, quadratic, and exponential models, as well as, trigonometric functions. Functions describe situations‬
‭where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage rate of 4.25% is a function of the‬
‭length of time the money is invested. Because we continually make theories about dependencies between quantities in nature and society, functions‬
‭are important tools in the construction of mathematical models.‬

‭FUNCTIONS usually have numerical inputs and outputs and are often defined by an algebraic expression. The set of inputs to a function is called‬
‭its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or for which the function makes‬
‭sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a verbal rule, as in,‬
‭“I’ll give you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx; or by a recursive rule. Two important families of‬
‭functions characterized by laws of growth are linear functions, which grow at a constant rate, and exponential functions, which grow at a constant‬
‭percent rate. Linear functions with a constant term of zero describe proportional relationships.‬

‭Determining an output value for a particular input involves evaluating an expression; finding inputs that yield a given output involves solving an‬
‭equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions can be visualized from the‬
‭intersection of their graphs. Because functions describe relationships between quantities, they are frequently used in modeling. Sometimes‬
‭functions are defined by a recursive process, which can be displayed effectively using a spreadsheet or other technology.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.3F.2IF‬ ‭Interpreting‬ ‭Interpret functions that‬‭arise in applications in terms of context.‬



‭Functions‬ ‭a.‬ ‭For a function that models a relationship between two quantities, interpret key features‬
‭of graphs and tables in terms of the quantities, and sketch graphs showing key features‬
‭given a verbal description of the relationship.‬‭Key‬‭features include: intercepts;‬
‭intervals where the function is increasing, decreasing, positive, or negative; relative‬
‭maximums and minimums; symmetries; end behavior; and periodicity‬‭. (F-IF.4)‬

‭b.‬ ‭Relate the domain of a function to its graph and, where applicable, to the quantitative‬
‭relationship it describes.‬‭For example, if the function‬‭h(n) gives the number of‬
‭person-hours it takes to assemble n engines in a factory, then the positive integers‬
‭would be an appropriate domain for the function‬‭. (F-IF.5)‬

‭c.‬ ‭Calculate and interpret the average rate of change of a function (presented‬
‭symbolically or as a table) over a specified interval. Estimate the rate of change from‬
‭a graph. (F-IF.6)‬

‭HS.M.3F.3IF‬ ‭Interpreting‬ ‭Analyze functions using different representations.‬
‭Functions‬ ‭a.‬ ‭Graph functions expressed symbolically‬‭and show key features of the graph, by hand‬

‭in simple cases and using technology for more complicated cases. (F-IF.7)‬

‭HS.M.3F.4BF‬ ‭Building Functions‬ ‭Build a function that models a relationship between two quantities.‬
‭a.‬ ‭Write a function that describes a relationship between two quantities. (F-BF.1)‬

‭i.‬ ‭Combine standard function types using arithmetic operations.‬‭For example, build‬
‭a function that models the temperature of a cooling body by adding a constant‬
‭function to a decaying exponential, and relate these functions to the model‬‭.‬

‭HS.M.3F.5BF‬ ‭Building Functions‬ ‭Build new functions form existing functions.‬
‭a.‬ ‭Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x - k)‬

‭for specific values of k (both positive and negative); find the value of k given the‬
‭graphs. Experiment with cases and illustrate an explanation of the effects on the graph‬



‭using technology. Include recognizing even and odd functions from their graphs and‬
‭algebraic expressions for them. (F-BF.3)‬

‭STANDARD 4:  MODELING‬
‭MODELING links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of choosing and‬
‭using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and‬
‭their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods.‬
‭When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with‬
‭data.‬

‭A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a‬
‭physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a three-dimensional‬
‭cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations—modeling a delivery route, a production‬
‭schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from the mathematical sciences. Real-world‬
‭situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is appropriately a‬
‭creative process. Like every such process, this depends on acquired expertise as well as creativity.‬

‭In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are a familiar‬
‭descriptive model—for example, graphs of global temperature and atmospheric CO2 over time. Analytic modeling seeks to explain data on the‬
‭basis of deeper theoretical ideas, albeit with parameters that are empirically based; for example, exponential growth of bacterial colonies (until‬
‭cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate. Functions are an important tool for‬
‭analyzing such problems.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4M.1‬ ‭Complete the basic modeling cycle.‬
‭a.‬ ‭Explain the differences between basic banking accounts interest and finance charges,‬

‭as well as personal loans.‬
‭b.‬ ‭Compare and Contrast subsidized and unsubsidized student loans, and different types‬

‭of mortgages.‬



‭c.‬ ‭Utilize patterns with numbers and exponential work, create a model such as planting‬
‭an apple orchard that will produce better apples, or the growth of mosquitos or other‬
‭pests.‬

‭d.‬ ‭Utilize probability and distributions to explain phenomena such as carnival games,‬
‭failure rates and quality control, queuing, gerrymandering, sabermetrics, as well as‬
‭absenteeism and graduation rates.‬

‭e.‬ ‭Apply optimization theory in areas such as linear programming, optimal locations,‬
‭gasoline blending, house flipping, college admittance and circuits (Hamiltonian).‬

‭f.‬ ‭Combine math and art to explain tessellations, golden ratio, kites in squares and other‬
‭ratios.‬

‭g.‬ ‭Create a sinusoidal model (daylight hours), quadratic model (CBL readers), linear‬
‭regression, genetics mapping or barbie bungee.‬

‭STANDARD 5:  GEOMETRY‬
‭This standard covers GEOMETRY principles such as congruence, similarity, right triangles and trigonometry, as well as circles.  Students also‬
‭study expressing geometric properties with equations using geometric measurement and dimension, as well as connections to equations through‬
‭modeling.  Students begin to formalize their geometry experiences from elementary and middle school, using more precise definitions and‬
‭developing careful proofs.‬

‭The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation. Fundamental are the‬
‭rigid motions: translations, rotations, reflections, and combinations of these, all of which are here assumed to preserve distance and angles (and‬



‭therefore shapes generally). Reflections and rotations each explain a particular type of symmetry, and the symmetries of an object offer insight into‬
‭its attributes.‬

‭For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. Once these triangle‬
‭congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about triangles, quadrilaterals,‬
‭and other geometric figures. Similarity transformations (rigid motions followed by dilations) define similarity in the same way that rigid motions‬
‭define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor" developed in the middle grades.‬

‭The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the Pythagorean Theorem, are‬
‭fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right triangles by the Law of Cosines.‬
‭Together, the Laws of Sines and Cosines embody the triangle congruence criteria for the cases where three pieces of information suffice to‬
‭completely solve a triangle.‬

‭Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. Just as the number line‬
‭associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two dimensions.‬
‭This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa.‬
‭Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬

‭HS.M.4G.1CO‬ ‭Congruence‬ ‭Experiment with transformations in the plane.‬
‭a.‬ ‭Represent transformations in the plane using, e.g., transparencies and geometry‬

‭software; describe transformations as functions that take points in the plane as inputs‬
‭and give other points as outputs. Compare transformations that preserve distance and‬
‭angle to those that do not (e.g., translation versus horizontal stretch). (G-CO.2)‬

‭HS.M.4G.7SRT‬ ‭Similarity‬ ‭Define trigonometric ratios and solve problems involving right triangles.‬



‭Right Triangles‬ ‭a.‬ ‭Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in‬
‭& Trigonometry‬ ‭applied problems. (G-SRT.8)‬

‭HS.M.4G.10C‬ ‭Circles‬ ‭Find arc lengths and area of sectors of circles.‬
‭a.‬ ‭Derive using similarity, the fact that the length of the arc intercepted by an angle is‬

‭proportional to the radius, and define the radian measure of the angle as the constant‬
‭of proportionality; derive the formula for the area of a sector. (G-C.5)‬

‭HS.M.4G.13GMD‬ ‭Geometric‬ ‭Explain volume formulas and use them to solve problems.‬
‭Measurement &‬ ‭a.   Give an informal argument for‬‭the formulas for the circumference of a circle, area of‬
‭Dimension‬ ‭a circle, volume of a cylinder, pyramid,‬‭and cone. (G-GMD.1)‬

‭c.‬ ‭Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.‬
‭(G-GMD.3)‬

‭HS.M.4G.15MG‬ ‭Modeling with‬ ‭Apply geometric concepts in modeling situations.‬
‭Geometry‬ ‭a.   Use geometric shapes, their measures,‬‭and their properties to describe objects (e.g.,‬

‭modeling a tree trunk or a human torso as a cylinder; modeling a Montana American‬
‭Indian tipi as a cone). (G-MG.1)‬



‭STANDARD 6:  STATISTICS & PROBABILITY‬

‭The content covered in this standard include interpreting categorical and quant5itative data, making inferences and justifying conclusions,‬
‭conditional probability and the rules of probability, as well as using probability to make decisions.‬

‭Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always sent a clear‬
‭message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and for making informed‬
‭decisions that take it into account.‬

‭Data are gathered, displayed, summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be‬
‭described in terms of key characteristics: measures of shape, center, and spread. The shape of a data distribution might be described as symmetric,‬
‭skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such as mean or median) and a statistic measuring spread‬
‭(such as standard deviation or interquartile range). Different distributions can be compared numerically using these statistics or compared visually‬
‭using plots.‬

‭Randomization has two important uses in drawing statistical conclusions. First, collecting data from a random sample of a population makes it‬
‭possible to draw valid conclusions about the whole population, taking variability into account. Second, randomly assigning individuals to different‬
‭treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to be due to‬
‭chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in‬
‭drawing conclusions from the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study‬
‭design, how the data were gathered, and the analyses employed as well as the data summaries and the conclusions drawn.‬

‭Random processes can be described mathematically by using a probability model: a list or description of the possible outcomes (the sample space),‬
‭each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable to‬
‭assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events;‬
‭probabilities of events can be computed by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an‬
‭understanding of independence and conditional probability, which can be approached through the analysis of two-way tables.‬

‭STANDARDS‬ ‭STRAND‬ ‭GOALS and PERFORMANCE OBJECTIVES‬



‭HS.M.6SP.3ID‬ ‭Interpreting‬ ‭Interpret linear models.‬
‭Categorical &‬ ‭a.  Interpret the slope (rate of change)‬‭and the intercept (constant term) of a linear model‬
‭Quantitative Data‬ ‭in the context of the data. (S-ID.7)‬

‭b.‬ ‭Compute (using technology) and interpret the correlation coefficient of a linear fit.‬
‭(S-ID.8)‬

‭HS.M.6SP.9MD‬ ‭Probability to‬ ‭Use probability to evaluate outcomes of decisions.‬
‭Make Decisions‬ ‭a.‬ ‭Use probabilities to make fair‬‭decisions (e.g., drawing by lots, using a random number‬

‭generator). (S-MD.6)‬

‭b.‬ ‭Analyze decisions and strategies using probability concepts (e.g., product testing,‬
‭medical testing, pulling a hockey goalie at the end of a game). (S-MD.7)‬


